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Abstract

In this thesis we study higher spin operators in conformal field theories with weakly broken higher

spin symmetry. Exact higher spin symmetry is known to be very constraining, containing the usual

conformal group as a subgroup, and actually enforcing the theory to be free. Moreover, even in the

presence of some weak, perturbative breaking of this symmetry, it still constrains the correlation

functions.

In particular, it simplifies the calculation of anomalous dimensions of those currents to the lowest

order in perturbation theory, reducing it to a two-point function of the non-conservation operator

corresponding to the current. We apply this method to a variety of vector models, both bosonic and

fermionic. Specifically, we reproduce some known results for Wilson-Fisher model in 4− ε expansion,

as well as the 1/N expansion of the model and use those to interpolate with good accuracy to d = 3

Ising model. We also get some new results for non-linear sigma model in 2 + ε expansion and cubic

models in 6 − ε. We also apply this technique to fermionic models, the Gross-Neveu-Yukawa model

in 4 − ε expansion and 1/N expansion. Further, we use a combination of direct Feynman diagram

calculation and analytic bootstrap methods to calculate the anomalous dimension of some composite

operators.

In the last chapter, we study vector models in d = 3 with a Chern-Simons interaction, which were

an object of close study recently as a testing ground of a whole family of boson-fermion dualities.

In particular, these dualities imply a matching of anomalous dimensions and three-point functions of

higher spin currents between bosonic and fermionic theories under a certain mapping of the Chern-

Simons coupling and the rank of the gauge group. We confirm those predictions using both the

non-conservation operator formalism and a direct Feynman diagram calculation.
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Chapter 1

Introduction

Much of the physics of 20-th (and, at least so far, 21-st) century was concentrated on the study of

critical phenomena. It was marked by two fundamental breakthroughs: the classical field theoretic

model of symmetry breaking proposed by Landau and Ginzburg [1], which provided a non-quantized,

thermodynamic description of second-order phase transitions (or in a more moderate language, crit-

ical points); and the discovery of renormalization group by Wilson [2], where a path-integral, fully

quantum-field-theoretical treatment was given. Together with a plethora of related work, these con-

cepts provide an understanding of a concept of universality, that is different physical systems behaving

in the same way nearby the critical point.

A very handwavy explanation as to what conformal theories have to do with critical phenomena

can be formulated as follows. In a typical thermodynamic setting, critical points occur at the end

of a continuous line of first-order phase transitions, where some characteristic energy scale of the

transition, such as the latent heat for water-vapor phase transition, vanishes. Amusingly enough, at

this point the correlation length ξ of, say, density fluctuations becomes infinite. These two facts are

of course related, owing to the relation l ∼ 1/E in natural units. In other words, in the vicinity of

critical points physical observables (such as the correlation functions, from which other observables

can be derived) can no longer depend on ξ, but have to capture something characteristic of phase

transition itself. More concretely, away from a critical point, a typical correlation function of a local

quantity O(x) behaves like

〈O(x)O(y)〉 ∝ e−|x−y|/ξ (1.0.1)
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whereas in the absence of ξ the only functional form you would be forced to write would be

〈O(x)O(y)〉 ∝ 1

|x− y|α
(1.0.2)

This argument establishes relevance of studying field theories with scale invariance. From a La-

grangian perspective, that would seem to be any theory without dimensionful parameters. At the

quantum level, however, there is a subtlety: an energy scale can be dynamically generated. With-

out diving into details for now, we just mention that scale invariance requires the vanishing of beta

functions of the theory:

∂gi
∂ log Λ

= 0 (1.0.3)

for all couplings gi. This connects to the second point mentioned above: that scale invariant theories

represent ending points of the renormalization group flows, where couplings no longer evolve.

1.1 Conformal invariance

With the observations made above, we now point out that empirically scale invariant critical theories

also exhibit full conformal invariance (under certain assumptions such as unitarity). With those

assumptions there exists a proof of that statement in d = 2 [3,4]. In other dimensions the situation is

more complicated, with varying amount of evidence or proof available. Perhaps the most compelling

argument was given for d = 4 in [5]. We refer the reader to the overview [6] as well as original papers

for d = 3 [7, 8] and d = 6 [9]. For now we will take that symmetry enhancement for granted and

describe the construction of the conformal group, following [10] and [11].

Conformal transformations of d-dimensional Rd space with flat metric gµν = ηµν are defined as

coordinate transformations x→ x′ which preserve the metric up to an overall conformal factor Λ(x):

ηρσ
∂xρ

∂x′µ
∂xσ

∂x′ν
= Λ(x)ηµν (1.1.1)

It’s straightforward to observe that scale transformation x→ λx trivially satisfies this equation with

Λ(x) = λ−2. The Poincaré group transformations also do, with Λ(x) = 1.

A key new (relative to scale and Poincaré) transformation which completes the conformal group

2



is the so called special conformal transformation (SCT):

x′µ =
xµ − x2bµ

1− 2(b · x) + b2x2
(1.1.2)

with the scale factor

Λ(x) = (1− 2(b · x) + b2x2)2 (1.1.3)

To rewrite in a more intuitive way:

x′µ

x′2
=
xµ

x2
− bµ (1.1.4)

which means shows that SCT is just a composition of inversion, translation and another inversion.

This remark simplifies the analysis of constraints imposed by the conformal group on the correlation

functions: for instance, the coordinate dependence of 2-, 3- and 4-point functions will be universal

up to (possible) functions of inversion-invariant coordinate combinations. Under the inversion, the

distance between two points x12 = |x1 − x2| transforms as:

x′212 =
x2

12

x2
1x

2
2

(1.1.5)

It is also possible to write down the action of the conformal group on local fields. Omitting the details,

imposing that a field belongs to an irreducible representation of the Lorentz group (for Euclidean

signature this would be just SO(d) rotations) 1, we construct the so-called quasi-primary fields. Under

a conformal transformation these fields transform as:

φ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆
d

φ(x) (1.1.6)

Here we restrict our attention to scalar fields, we will return to fields with spin later. Notice that ∆

in this definition coincides with scaling dimension: under x′ = λx transformation we get:

φ(λx) = λ−∆φ(x) (1.1.7)

Using those transformation laws and imposing conformal symmetry, it is possible to restrict correlation

1Simply put, it means that the field has the amount of indices equal to its spin, eg it’s a vector field and not a
derivative of a scalar.
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functions. For the two point function of two scalar primaries of dimensions ∆1, ∆2 we get:

〈φ1(x1)φ2(x2)〉 =
C12δ∆1∆2

x∆1+∆2
12

(1.1.8)

which is only non-zero for ∆1 = ∆2. For three-point functions we get

〈φ1(x1)φ2(x2)φ3(x3) =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

(1.1.9)

We will refer in future to C12 and C123 as two and three-point coefficients. Note that it’s possible to

”normalize away” C12, since only the combination

C2
123

C12C23C31
(1.1.10)

is physical. Finally, for a four-point function one gets

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
1

x∆1+∆2
12 x∆3+∆4

34

(
x24

x14

)∆1−∆2
(
x14

x13

)∆3−∆4

F (u, v) (1.1.11)

Here u and v are the conformally invariant cross-ratios 2 given by

u ≡ x2
12x

2
34

x2
13x

2
24

, v ≡ x2
12x

2
34

x2
23x

2
14

(1.1.12)

It is possible to impose constraints on higher-point functions. However, it is less relevant as the

operator-product expansion allows to reduce these two a combination of two- and three-point functions.

Most of the dynamics of a conformal field theory (CFT) is encoded in such an expansion of a four-

point function. It is also possible to impose similar constraints for fields with spin. We come back to

it in later chapters. We conclude those introductory remarks by noticing that promoting conformal

invariance from a classical to a quantum case is not automatic: it breaks down for theories with non-

vanishing beta-functions. It doesn’t mean that one is restricted to studying non-interacting conformal

field theories however. The most physically interesting case is the study of critical points, where two or

more terms in the beta function cancel out at some value of couplings, giving rise to a fully interacting

CFT. Finally, the concept of radial quantization described in all classical textbooks on CFT (eg [10])

allows to define a Hilbert space of states in a CFT and thus provides a mapping between local fields

2Inversion (and thus conformal) invariance follows from (1.1.5).
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and operators. We will therefore use those two terms interchangeably further on.

1.2 Higher spin operators

We will now turn our attention to operators with spin. This is accomplished by allowing the quasi-

primary fields mentioned in the previous chapter to transform in some non-trivial representation R of

SO(d). We then conclude that the spectrum of a d-dimensional conformal field theory [12] consists

of local operators labeled by conformal dimension ∆, representation R, and possibly a representation

rG of an internal global symmetry group. The precise determination of the spectrum of an interacting

CFT is of fundamental importance. Together with the knowledge of the OPE coefficients, it essentially

amounts to a solution of the CFT.

It is well-known that in a unitary CFTd, dimensions of primary operators satisfy certain inequal-

ities known as unitarity bounds [13, 14]. For a spin s operator Jµ1µ2···µs in the symmetric traceless

representation of SO(d), the unitarity bound is

∆s ≥ d− 2 + s , s ≥ 1 . (1.2.1)

For a scalar operator O, it reads

∆0 ≥
d

2
− 1 (1.2.2)

and one may derive similar bounds for more general representations of SO(d). When these inequalities

are saturated, the corresponding operator satisfies some differential equation, and it belongs to a short

representation of the conformal algebra. In the case of a scalar operator, the shortening condition

is simply the wave equation ∂2O = 0, i.e. O is a free scalar field. For a spin s operator (s ≥ 1),

saturation of the bound (1.2.1) implies that it is a conserved current

∂µJµµ2···µs = 0 . (1.2.3)

The cases s = 1 (an exactly conserved current with ∆ = d− 1) and s = 2 (the conserved stress tensor

with ∆ = d) are familiar in any CFT. Conserved currents of higher spins s > 2 are explicitly realized

5



in free field theories. For example, in a free scalar CFT they take the schematic form

Jµ1···µs =

s∑
k=0

csk∂{µ1
· · · ∂µkφ∂µk+1

· · · ∂µs}φ , (1.2.4)

where brackets denote traceless symmetrization and the coefficients may be determined by the conser-

vation equation, as we review in Section 2.1. It is evident that these operators have exact dimension

∆s = d − 2 + s in the free theory. As usual, conserved currents correspond to symmetries of the

theory. The presence of exactly conserved currents of all spins implies that the CFT has an infinite

dimensional higher spin symmetry which includes the conformal symmetry as a subalgebra. Higher

spin symmetries turn out to be very constraining. One may prove that if a CFT possesses a spin 4 con-

served current, then an infinite tower of conserved higher spin operators is present, and all correlation

functions of local operators coincide with those of a free CFT [15–19].

In an interacting CFT, the higher spin operators are not exactly conserved and acquire an anoma-

lous dimension

∆s = d− 2 + s+ γs . (1.2.5)

An interesting class of models are those for which the higher spin symmetries are slightly broken. By

this we mean that there is an expansion parameter g, playing the role of a coupling constant, such

that for small g the anomalous dimensions γs(g) are small, and in the g → 0 limit one recovers exact

conservation of the currents. Explicit examples are weakly coupled fixed points of the Wilson-Fisher

type [20], where g corresponds to a power of ε, or certain large N CFT’s, where g is related to a power

of 1/N . At the operator level, this implies that the non-conservation equation for the spin s operator

takes the form

∂ · Js = gKs−1 (1.2.6)

where Ks−1 is an operator of spin s − 1, and we factored out g to highlight the fact that at g = 0

the current is conserved. The slightly broken higher spin symmetries (1.2.6) can still be used to put

non-trivial constraints on the correlation functions [21]. The equation (1.2.6) also gives an efficient

way to determine the anomalous dimensions γs to leading order in the small parameter g [22, 23].

As we show below, using (1.2.6) and conformal symmetry one readily finds that γs(g) ∝ g2, where

the proportionality constant is simply obtained by computing the two point functions 〈Ks−1Ks−1〉

at g = 0. This method is similar in spirit to the one recently advocated in [24], where the leading

6



anomalous dimension of φ at the Wilson-Fisher fixed point in d = 4 − ε was reproduced by using

conformal symmetry, without explicit input from perturbation theory.

In addition to their intrinsic interest and their relevance in statistical mechanics, the higher-

spin operators we study in the thesis also play an important role in the context of the AdS/CFT

correspondence. According to a well understood entry of the AdS/CFT dictionary, exactly conserved

currents of spin s in CFTd are dual to massless spin s gauge fields in AdSd+1. Interacting higher

spin gauge theories in AdSd+1 were explicitly constructed by Vasiliev [25–28], and a class of them

were naturally conjectured [29] to be dual to the singlet sector of the free O(N) vector model (we

will describe the AdS/CFT interpretation for fermionic and Chern-Simons models in chapter 3 and

4 respectively). The exactly conserved currents Js with s = 2, 4, 6, . . . are dual to the corresponding

massless gauge fields in the Vasiliev theory, and the scalar operator J0 = φiφi to a bulk scalar field with

m2 = −2(d− 2)/`2AdS . As further conjectured in [29], one may extend this duality to the interacting

case, obtained by adding to the free theory the “double-trace” interaction λ(φiφi)2. For d < 4 there

is a flow to an interacting IR fixed point3 which is conjectured to be dual to the same Vasiliev theory

but with alternate boundary conditions on the bulk scalar field [31]. A distinguishing feature of large

N interacting vector models is that the descendant operator Ks−1 appearing in the non-conservation

equation is a “double-trace” operator, schematically

∂ · Js =
1√
N

∑
JJ . (1.2.7)

This implies that the anomalous dimensions are γs ∼ O(1/N), which corresponds to a quantum

breaking of the higher spin gauge symmetry in the bulk: the higher spin gauge fields acquire masses

through loop corrections4 when the bulk scalar is quantized with the alternate boundary conditions.

In representation theory language, the equation (1.2.6) means that the short representation of the

conformal algebra with (∆ = d− 2 + s, s) combines with the representation (∆ = d− 1 + s, s− 1) to

form a long multiplet with (∆ > d− 2 + s, s). In the bulk, this phenomenon corresponds to a higher

spin version of the Higgs mechanism [32]: the gauge field swallows a spin s− 1 Higgs field to yield a

massive spin s field. The fact that the operator on the right-hand side of (1.2.7) is double-trace implies

that the Higgs field is a composite two-particle state, and the breaking is subleading at large N . This

3For 4 < d < 6 there is a flow to a (presumably metastable) perturbatively unitary, UV fixed point [30].
4In the higher spin/CFT dualities, the bulk Newton’s constant GN scales as 1/N . The mass of a spin s field

in AdSd+1 is related to the dual conformal dimension by (∆s + s − 2)(∆s + 2 − d − s) = m2
s`

2
AdS , which implies

m2
s`

2
AdS ∼ 1/N for γs ∼ 1/N . To leading order at large N , m2

s`
2
AdS ≈ (2s+ d− 4)γs.

7



is different from theories of Yang-Mills type, where Ks−1 in (1.2.6) is a single trace operator, and the

anomalous dimensions are non-zero already at planar level. In the bulk, this would correspond to a

tree-level Higgs mechanism.

1.3 Outline

We begin by setting up some general notation and the method used to fix the anomalous dimensions of

the higher-spin currents in particular models. In Chapter 2, based on [33], co-authored with S. Giombi,

we apply that machinery to a family of bosonic O(N) vector models in dimensions between 2 and

6. In Chapter 3, based on [34] with E. Skvortsov and S. Giombi, we study various fermionic models.

Finally, in Chapter 4, based on [35] with S. Giombi, E. Skvortsov, S. Prakash and V. Gurucharan, we

calculate the 1/N anomalous dimensions for Chern-Simons vector models in d = 3 and use them to

confirm a particular case of d = 3 boson-fermion dualities.

1.4 General method

In this section we will setup the definitions and notations which will then be applied to the particular

models. We will also describe the derivation of the master formula which allows to calculate the

lowest-order value of the anomalous dimensions without doing any loop calculations.

1.4.1 Constructing higher spin currents

We first introduce some useful technology for the manipulation of symmetric tensors. For a given

a rank s tensor Jµ1µ2···µs in the symmetric traceless representation, we may introduce an auxiliary

“polarization vector” zµ, which can be taken to be null (z2 = 0), and construct the index-free projected

tensor

Ĵs ≡ Jµ1···µsz
µ1 · · · zµs , z2 = 0 . (1.4.1)

It is evident that the multiplication by zµ selects only the symmetric traceless part of Jµ1···µs . One

may always go back to the full tensor by “stripping off” the null vectors and subtracting traces.

In practice, this can be done efficiently with with the help of the following differential operator in

8



z-space [23,36–38] (sometimes called Thomas derivative):

Dµ
z ≡

(
d

2
− 1

)
∂zµ + zν∂zν∂zµ −

1

2
zµ∂zν∂zν . (1.4.2)

Acting once with this operator removes a zµ, thus freeing one index of the tensor, while taking into

account the constraint z2 = 0. The unprojected Jµ1···µs can thus be recovered via

Jµ1µ2···µs ∝ Dz
µ1
Dz
µ2
· · ·Dz

µs Ĵs . (1.4.3)

The symmetrization and tracelessness of the operator obtained this way is ensured by the properties

[Dµ
z , D

ν
z ] = 0, Dµ

zD
z
µ = 0. (1.4.4)

Similarly, the conservation equation (1.2.3) of the spin s operator may be written compactly in this

notation as

∂µD
µ
z Ĵs = 0. (1.4.5)

This equation is satisfied in any free field theory (bosonic or fermionic).

1.4.2 Anomalous dimensions of the weakly broken currents

Let us consider a CFT with a parameter g playing the role of a coupling constant, such that in the

g = 0 limit there are exactly conserved currents Js. When a non-zero coupling g is turned on, the

currents will be no longer conserved for general s and acquire anomalous dimensions

∆s = d− 2 + s+ γs(g) . (1.4.6)

The non-conservation of the currents means that a non-zero operator of spin s − 1 must appear on

the right hand side of (1.2.3), or equivalently (1.4.5)

∂µD
µ
z Ĵs = gK̂s−1 , (1.4.7)

where we have pulled out an explicit factor of g in front of the descendant to stress that the right

hand side vanishes when g = 0. Here g is assumed to be a small expansion parameter, and may be

9



either a power of ε in the Wilson-Fisher type models, or a power of 1/N in the large N approach. We

now proceed by noting that in a CFT the form of the two-point function of the spin s operators is

fixed by conformal symmetry to be

〈Ĵs(x1)Ĵs′(x2)〉 = δss′C(g)
Îs

(x2
12)∆s

(1.4.8)

where

Î = Iµνz
µ
1 z

ν
2 , Iµν = ηµν − 2

xµ12x
ν
12

x2
12

. (1.4.9)

Acting on this two-point function with ∂µD
µ
z on both operators (with different projection vectors z1

and z2), one gets, using the form of the non-conservation equation (1.4.7)

∂1µD
µ
z1∂2µD

µ
z2〈Ĵs(x1)Ĵs(x2)〉 = g2〈K̂s−1(x1)K̂s−1(x2)〉. (1.4.10)

On the other hand, differentiating the right hand side of (1.4.8), setting z1 = z2 at the end, and

dividing by the two-point function of J ′s, one finds the relation [22,23]

g2x̂2 〈K̂s−1(x1)K̂s−1(x2)〉
〈Ĵs(x1)Ĵs(x2)〉

= −γs(g2)s(s+ d/2− 2)
[
(s+ d/2− 1)(s+ d− 3)

+ γs(g
2)(s2 + sd/2− 2s+ d/2− 1)

]
. (1.4.11)

The right-hand side being proportional to γs is not a coincidence and follows from the conservation of

the higher-spin current at zero coupling (1.4.5). From a CFT standpoint, (1.4.11) is an exact relation.

In practice, when doing perturbation theory in g, one computes the correlators on the left hand side in

powers of the coupling. It is then evident that (1.4.11) allows to gain an order in perturbation theory.

To obtain the anomalous dimensions of the broken currents to leading order in g, one has simply to

evaluate ratio of correlators in the free theory, g = 0. In particular, this only involves finite tree-level

correlators, avoiding the issues of regularization and renormalization.

1.4.3 Universal large spin behavior

All of the results in this thesis can be compared to the universal prediction of large spin behavior of

operators of the form φ∂̂sφ done in [39,40]. More concretely, the leading order s→∞ asymptotic for

10



the twist, τs = ∆s−s and consequently the anomalous dimension of higher-spin currents is established:

τs = 2τφ −
cτmin
sτmin

+ . . . , (1.4.12)

The coefficient cτmin is given by the formula (3.18) of [39] which reads in terms of two- and three-point

function coefficients

cτmin =
Γ(τmin + 2smin)

2smin−1Γ( τmin+2smin
2 )2

Γ(∆)2

Γ(∆− τmin
2 )2

C2
OOOτmin

C2
OOCOτminOτmin

(1.4.13)

where COO and COτminOτmin are the two-point function coefficients of O and Oτmin operators and

COOOτmin is the three-point function coefficient (the fraction in (1.4.13) is the one appearing in the

conformal block expansion of the four-point function of O’s, and the derivation of (1.4.13) uses the

contribution to of Oτmin block to the four-point function in a certain limit.)

Let us briefly review the derivation of this result, closely following the method used in [41]. We

study the four-point function of four scalar operators O:

v∆

(
1 +

∑
τ,s

aτ,su
τ/2fτ,s(u, v)

)
= u∆

(
1 +

∑
τ,s

aτ,sv
τ/2fτ,s(v, u)

)
(1.4.14)

where the contribution of the identity operator is isolated and the conformal blocks are written as

gτ,s(u, v) = uτ/2fτ,s(u, v) to emphasize the small-u behavior (functions fτ,s stay finite as u→ 0).

Now we will study this equation in a double-scaling limit, where we first send v to 0 and then

u. As shown in [39, 40], the presence of the identity operator in the crossed channel gives rise to

double-trace higher spin operators constructed from O, [O,O]s, with twists τs = 2∆O + γs where the

anomalous dimension γs vanishes as s → ∞. The right-hand side will in turn be dominated by the

contribution of the operator with minimum twist τmin, such that the most singular contributions as

v → 0 of (1.4.14) take the form:

∑
s

asu
γs/2f

(s)
coll(v)|v→0 = aτminv

τmin/2−∆fτmin(v, u)|v→0 (1.4.15)

where a are the normalized three-point coefficients (as in the last term of (1.4.13)) and the collinear

11



conformal blocks f
(s)
coll are given by (see eg [42]):

as =
2Γ(∆ + s+ γs

2 )2Γ(2∆ + 2 + γs
2 − 1)

Γ(s+ γs
2 + 1)Γ(∆)2Γ(2∆ + 2s+ γs − 1)

(1.4.16)

f
(s)
coll(v) = (1− v)s2F1(∆ + s+ γs/2,∆ + s+ γs/2, 2∆ + 2s+ γs; 1− v) (1.4.17)

A key observation is that each conformal block only diverges logarithmically in the second argument (v

on LHS, u on RHS). Thus we need a sum of logarithmically divergent terms to reproduce a power-like

vτmin/2−∆ on RHS. This is only possible if infinitely many terms on LHS contribute. Now we proceed

with small u expansion, extracting only log u pieces:

∑
s

as
γs
2

log uf
(s)
coll(v)|v→0 = aτminv

τmin/2−∆fτmin(v, u)| v→0
log u,u→0

(1.4.18)

The RHS is known to be (see [41,43]):

fτ (v, u)| v→0
log u,u→0

= − Γ(τ + 2s)

(−2)sΓ( τ+2s
2 )2

log u+O(v) (1.4.19)

As a last step, we convert the sum over the spin s in (1.4.18) into an integral over the variable j = s
√
v

at large s, using the following form for the hypergeometric function:

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt
tb−1(1− t)c−b−1

(1− tz)a
(1.4.20)

so that (1.4.18) takes the form:

∫ ∞
0

djK∆(j, v)
γ( j√

v
)

2
= − Γ(τmin + 2smin)

(−2)sΓ( τmin+2smin
2 )2

vτmin/2(1 +O(v)) (1.4.21)

where the kernel K∆(j, v) is complicated expression given in [41]. This equation determines γs order

by order in 1/s by applying the inverse of the kernel K∆(j, v) to the RHS. However, for the purpose

of determining the leading order behavior, it’s sufficient to point out that

∫ ∞
0

djK∆(j, v)

(
v

j2

)n
= vn

Γ(∆− n)2

Γ(∆)2
+O(vn+1) (1.4.22)
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It’s evident then that we can just set n = τmin/2 in the equation above, such that

γs = − cτmin
sτmin

(1.4.23)

and then upon collecting all the coefficients the formula (1.4.13) is reproduced exactly (the (−1)smin

is not important for the case of four identical scalar operators, as only even spins can be exchanged

in the four-point function). Notice that it’s possible to calculate all the terms in the log u part of the

conformal block (1.4.19), as well as extra terms in (1.4.22). This allows to systematically extract all

terms in the 1/s expansion of γs. For this and other details of the calculation see [41].
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Chapter 2

Anomalous dimensions in the

bosonic vector models

2.1 Introduction and Summary

In this chapter, we apply the general method to the explicit example of interacting scalar field theories

with O(N) symmetry in various dimensions. These include the familiar Wilson-Fisher fixed point of

the φ4 theory in d = 4− ε, the large N expansion of the critical O(N) model in arbitrary dimension

d, the perturbative IR fixed points of the cubic O(N) models in d = 6− ε [30], and the UV fixed point

of the non-linear sigma model in d = 2 + ε. In all these examples, we determine the explicit structure

of the non-conservation equation (1.2.6) and use it to find the leading order anomalous dimensions of

higher spin operators in the singlet, symmetric traceless and antisymmetric representations of O(N).

Many of our findings were obtained before by different methods [44, 45], but the results in the cubic

models in d = 6− ε and in the nonlinear sigma model in d = 2 + ε are new as far as we know. In all

examples, we pay particular attention to the large spin behavior of the anomalous dimensions, finding

precise agreement with general expectations [39,40,46–48]. Combining information from the d = 4− ε

and d = 2 + ε expansions, as well as some input from the large spin limit, in Section 7 we also obtain

some estimates for the dimension of the singlet higher spin operators in the d = 3 O(N) models for a

few low values of spin s and N .
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2.1.1 The higher spin currents in free field theory

Let us now construct the explicit conserved higher spin currents in the free CFT of N real massless

scalar fields. They satisfy the free wave equation

∂2φi = 0, i = 1, . . . , N (2.1.1)

and there is a O(N) global symmetry under which φi transforms in the fundamental representation.

This free CFT admits an infinite tower of exactly conserved higher spin operators (1.2.4), which are

bilinears in the scalars with a total of s derivatives acting on the fields. Projecting indices with the

null vector zµ, these operators can be written as

Ĵ ij =
s∑

k=0

csk∂̂
s−kφi∂̂kφj (2.1.2)

where we have introduced the projected derivative ∂̂ = ∂µz
µ, and csk are coefficients that will be

fixed shortly. Of course, one can separate this operator into irreducible representations of O(N), as

discussed in more detail below. It is convenient to rewrite (2.1.2) in the following form

Ĵ ijs = fs(∂̂1, ∂̂2)φi(x1)φj(x2)
∣∣∣
x1,x2→x

fs(u, v) =

s∑
k=0

csku
s−kvk , u = ∂̂1, v = ∂̂2.

(2.1.3)

where we have encoded the coefficients csk into the function fs(u, v). Now the conservation equation

(1.4.5) may be turned into a differential equation for the function fs, which, upon using the free

equation of motion ∂2φ = 0, reduces to1

(
(d/2− 1)(∂u + ∂v) + u∂2

u + v∂2
v

)
fs = 0. (2.1.4)

The following ansatz for fs is convenient

fs = (u+ v)sφs

(u− v
u+ v

)
, (2.1.5)

1The same equation may be obtained by requiring that Js is a conformal primary, see e.g. [37].
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and results in the ordinary differential equation

(
(1− t2)

d2

dt2
− (d− 2)t

d

dt
+ s(s+ d− 3)

)
φs(t) = 0 . (2.1.6)

The solution to this equation is given by the order s Gegenbauer polynomials, φs(t) = C
d/2−3/2
s (t),

which are even (odd) for even (odd) s. Hence, up to the overall normalization, one gets the following

expressions for the conserved higher spin currents

Ĵ ijs = (∂̂1 + ∂̂2)sCd/2−3/2
s

( ∂̂1 − ∂̂2

∂̂1 + ∂̂2

)
φi(x1)φj(x2)

∣∣∣
x1,x2→x

. (2.1.7)

One may also write

(u+ v)sCd/2−3/2
s

(
u− v
u+ v

)
= (2.1.8)

=

√
πΓ
(
d
2 + s− 1

)
Γ(d+ s− 3)

2d−4Γ
(
d−3

2

) s∑
k=0

(−1)kus−kvk

k!(s− k)! Γ
(
k + d

2 − 1
)

Γ
(
s− k + d

2 − 1
)

from which one can read-off the coefficients csk in (2.1.2) if desired. The overall normalization is

arbitrary at this level. Note that one feature of the form (2.1.7) is that it vanishes at d = 3, see the

factor in front of the sum in (2.1.8). This vanishing is not meaningful, one could always remove it by

normalizing the currents differently. For the explicit calculations below, we find it more convenient to

use the form (2.1.7) in terms of Gegenbauer polynomials.

The higher spin operators may be decomposed into symmetric traceless, antisymmetric and singlet

of O(N)

J ijs = J (ij)
s + J [ij]

s + Js (2.1.9)

where Js ≡ J iis denotes the singlet current. It is evident by symmetry that the singlet and symmetric

traceless representations only exist for even spin, and the antisymmetric one for odd spins. For s = 1,

the antisymmetric operator J
[ij]
1 is nothing but the familiar conserved current corresponding to the

O(N) global symmetry. The presence of the conserved currents of all spins implies that the free

CFT has an infinite dimensional exact higher spin symmetry. The generators can be constructed in

a canonical way as follows. First, by contracting a spin s current with a spin s− 1 conformal Killing

tensor ζµ1...µs−1 ,2 we may obtain an ordinary current Jζµ,s = Jµµ2···µsζ
µ2...µs , which is conserved as it

2A conformal Killing tensor is a symmetric tensor satisfying ∂(µ1
ζµ2···µs) = s−1

d+2s−4
g(µ1µ2

∂νζµ3···µs)ν .
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is easily checked. From this, one can get a conserved charge Qζs in the usual way. For instance, for

s = 2, the singlet current J2 is proportional to the traceless stress tensor of the CFT, and contracting

this with the linearly independent conformal Killing vectors one gets the (d+ 2)(d+ 1)/2 generators

of the conformal algebra. In the interacting theory, all of the currents (2.1.9), except for J
[ij]
1 and J2,

will be broken. In particular, while the free CFT has N(N + 1)/2 conserved “stress tensors”, only

one of them remains conserved when interactions are switched on.

For what follows, it will be useful to work out the normalization of the two point function of

the currents (2.1.7) in arbitrary dimensions d. Since the currents are bilinear in φ there will be two

propagators, which are differentiated by the hatted derivatives at both points. The calculation is

drastically simplified by using the Schwinger parametrization of the propagator

〈φi(x)φj(0)〉 =
Γ(d/2− 1)

4πd/2
δij

(x2)d/2−1
= δij

∫ ∞
0

dα

4πd/2
αd/2−2e−αx

2

. (2.1.10)

Owing to the fact that ∂̂x̂ = 0, since z2 = 0, all hatted derivatives are replaced by −2αx̂ if acting at

point x and +2αx̂ at point 0, so that instead of spin sums we have integrals of Gegenbauer polynomials

over the parameters α1 and α2 for the first and second propagator respectively. Separating the O(N)

indices, we may write

〈Ĵ ijs (x)Ĵkls (0)〉 = (δikδjl + (−1)sδilδjk)
Ns(x̂)2s

(x2)d+2s−2
(2.1.11)

The (−1)s comes from the property of C
d/2−3/2
s (−x) = (−1)sC

d/2−3/2
s (x). The spacetime and zµ

dependence is of course as required by conformal symmetry for a spin s conserved operator. The

normalization factor Ns is given by the following expression

(−1)s22s

(4πd/2)2

∫ ∞
0

∫ ∞
0

dα1dα2α
d/2−2
1 α

d/2−2
2 e−α1−α2(α1 + α2)2sCd/2−3/2

s

(α1 − α2

α1 + α2

)
Cd/2−3/2
s

(α1 − α2

α1 + α2

)
=

(−1)s22s

(4πd/2)2

∫ ∞
0

dp
pd−4+2s+1

2d−3
e−p

∫ 1

−1

dq(1− q2)d/2−2(Cd/2−3/2
s (q))2

(2.1.12)

from which we get

Ns =
(−1)s22s

(4πd/2)2

πΓ(d+ 2s− 3)Γ(d+ s− 3)

22d−8s!(Γ(d/2− 3/2))2
(2.1.13)
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The norms corresponding to the irreducible representations of O(N) are then

〈Ĵs(x)Ĵs(0)〉 = N(1 + (−1)s)
Ns(x̂)2s

(x2)d+2s−2
(2.1.14)

for the singlet,

〈Ĵ (ij)
s (x)Ĵ (kl)

s (0)〉 =
(1 + (−1)s)

2
(δikδjl + δilδjk − 2

N
δijδkl)

Ns(x̂)2s

(x2)d+2s−2
(2.1.15)

for the symmetric traceless, and

〈Ĵ [ij]
s (x)Ĵ [kl]

s (0)〉 =
(1− (−1)s)

2
(δikδjl − δilδjk)

Ns(x̂)2s

(x2)d+2s−2
(2.1.16)

for the antisymmetric.

2.1.2 Anomalous dimensions of the weakly broken currents

The considerations above are general and apply to any CFT with weakly broken higher spin operators

(1.4.7). For the explicit examples discussed in the rest of the chapter, it will be useful to determine

the general form of the descendants Ks−1 in the scalar theories. Applying the divergence operator to

the higher spin currents (2.1.7), we find in terms of the function fs(u, v):

∂µD
µ
z Ĵ

ij
s =

[
hs(∂̂1, ∂̂2)∂2

1 + (−1)shs(∂̂2, ∂̂1)∂2
2

]
φi(x1)φj(x2)

∣∣∣
x1,x2→x

,

hs(u, v) ≡ (d/2− 1)∂ufs +
u− v

2
∂2
uufs + v∂2

uvfs .

(2.1.17)

Of course, this is zero in the free theory where ∂2
1 = ∂2

2 = 0. In the interacting theory, (2.1.17) allows

to determine the form of the descendent once the equation of motion for φ is known in the specific

model of interest. The function hs(u, v) can be evaluated more explicitly using the recurrence relations

between the Gegenbauer polynomials, and one finds

hs(u, v) = (u+ v)s−1(d− 3)
[
(d/2− 1)C

d/2−1/2
s−1

(u− v
u+ v

)
− 2(d− 1)v

u+ v
C
d/2+1/2
s−2

(u− v
u+ v

)]
. (2.1.18)

As discussed above, the vanishing at d = 3 is superficial and is a consequence of the normalization of

the currents (2.1.7).
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Note that the methods described in this section can also be used to fix the leading order anomalous

dimension of a nearly free field. For instance, in the case of a scalar field, the equation of motion takes

the form

∂2φ = gV (2.1.19)

where V is some operator of spin zero and bare dimension d/2 + 1. By an analogous calculation as

the one described above for the higher spin operators, one can show that to leading order γφ ∝ g2,

where the proportionality constant is related to the two point function 〈V V 〉 at g = 0. We will

use this method in the next Section to reproduce the well-known anomalous dimension of φ at the

Wilson-Fisher fixed point, see also [24]. The analogous calculations in the large N approach and in

the nonlinear sigma model in d = 2 + ε are given in Section 4 and 6 respectively.

2.2 O(N) model in d = 4− ε

We now apply the general formulae obtained in the previous section to the case of the critical O(N)

φ4 model in d = 4− ε dimensions, with action

S =

∫
ddx
(1

2
∂µφ

i∂µφi +
λ

4
(φiφi)2

)
. (2.2.1)

The one-loop beta function is well known and reads

β(λ) = −ελ+
(N + 8)λ2

8π2
(2.2.2)

and thus there is a IR critical point at λ∗ = 8π2

N+8ε + O(ε2). Before moving on to the higher spin

operators, let us show how to reproduce the leading order anomalous dimension of φ using the classical

equations of motion, following the methods reviewed above, see also [24]. In the free theory, when

λ = 0, the elementary field φi has canonical dimension ∆0 = d/2 − 1, thus saturating the unitarity

bound and obeying ∂2φi = 0. The tree-level two-point function of φi is given by

〈φi(x1)φj(x2)〉 =
Γ(d/2− 1)

4πd/2
δij

(x2
12)d/2−1

. (2.2.3)
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When we turn on the interaction, the equation of motion is modified to

∂2φi = λφiφjφj , (2.2.4)

and the two-point function receives corrections. At the conformal point, the exact two-point function

is constrained by conformal symmetry to be

〈φi(x1)φj(x2)〉 = δij
C(λ)

(x2
12)d/2−1+γφ

. (2.2.5)

Applying the equation of motion twice, i.e. taking the ∂2
1∂

2
2 on both sides and taking the ratio one

gets:

λ2
∗(x

2
12)2 〈φiφkφk(x1)φjφlφl(x2)〉

〈φi(x1)φj(x2)〉
= 4γφ(γφ + 1)(d− 2 + 2γφ)(d+ 2γφ). (2.2.6)

The fact that the right-hand side is proportional to γφ is expected and is due to the shortening

condition at zero coupling, ∂2φi = 0. To get the leading order in ε for γφ we notice that in the left

hand side λ2
∗ ∼ ε2, so in the two-point function ratio we can just plug d = 4 propagators

〈φi(x1)φj(x2)〉 =
1

4π2

δij

x2
12

. (2.2.7)

In the right-hand side we get

4γφ(γφ + 1)(2− ε+ γφ)(4− ε+ 2γφ) = 32γφ +O(ε3) (2.2.8)

since it is evident that γφ ∼ ε2. Now, the two-point function in the numerator of (2.2.6), evaluated at

tree level, yields

〈φiφkφk(x1)φjφlφl(x2)〉0 =
1

(4π2)3
(2N + 4)δij

1

(x2
12)3

(2.2.9)

Finally, taking the ratio by the free propagator and equating the right-hand side (2.2.8), we recover

the well-known result

γφ =
λ2
∗

(4π2)2

N + 2

16
=

N + 2

4(N + 8)2
ε2. (2.2.10)

One can contrast this to the usual calculation, which is technically quite different. There, the lead-

ing order correction to the two-point function of the φi field is given by extracting the logarithmic

divergence of the standard two-loop diagram in Fig. 1.
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Figure 2.1: The 2-loop diagram yielding the leading order anomalous dimension of the φi field in the
O(N) model in the standard approach.

We may now proceed to studying the higher spin currents using the same method. We use the

definition of the currents (2.1.7) and the descendant (2.1.17). To lowest order the ε dependence is

fixed by the critical coupling λ∗, so we can use d = 4 everywhere. The currents are then:

Ĵ ijs = (∂̂1 + ∂̂2)sC1/2
s

( ∂̂1 − ∂̂2

∂̂1 + ∂̂2

)
φi(x1)φj(x2)

∣∣∣
x1,x2→x

, (2.2.11)

and the descendant:

K̂ij
s−1(x) =

(
hs(∂̂1 + ∂̂3 + ∂̂4, ∂̂2) + (−1)shs(∂̂2 + ∂̂3 + ∂̂4, ∂̂1)

)
φi(x1)φj(x2)φk(x3)φk(x4)

∣∣∣
x1,2,3,4→x

,

hs(u, v) = (u+ v)s−1
[
C

3/2
s−1

(u− v
u+ v

)
− 6v

u+ v
C

5/2
s−2

(u− v
u+ v

)]
(2.2.12)

Note that this form is redundant in the sense that we could combine ∂̂3 + ∂̂4 into ∂̂3 acting on φiφi(x3),

but it makes all the symmetries of the diagrams we will need to calculate explicit. A few examples

might be useful. For instance, for s = 1 the only non-zero current is the antisymmetric one, for which

the descendant vanishes as it should since it’s the current in the adjoint of O(N). For s = 2 we have

non-zero currents for the symmetric traceless and the singlet representations, and the descendant is

K̂ij
1 = 2(∂̂3 + ∂̂4 − ∂̂1 − ∂̂2)φi(x1)φj(x2)φk(x3)φk(x4)

∣∣∣
x1,2,3,4→x

= −2∂̂(φiφj)φkφk + 2φiφj ∂̂(φkφk)

(2.2.13)

This vanishes for the singlet as it is the conserved stress-energy tensor. It does not vanish for the

symmetric traceless representation, as the corresponding operator acquires an anomalous dimension

in the interacting theory. As another example, the spin 3 descendant of the spin 4 singlet current is

K̂3 = 20(φiφi∂̂3(φkφk)− 6∂̂(φiφi)∂̂2(φkφk) + 33(φi∂̂2φi − 30∂̂φi∂̂φi)∂̂(φkφk)

−3∂̂(3φi∂̂2φi − 4∂̂φi∂̂φi)φkφk (2.2.14)
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The master formula (1.4.11) at the leading order yields the following for γs:

γs = − λ2
∗

s2(s+ 1)2

x̂2〈K̂s−1(x)K̂s−1(0)〉
〈Ĵs(x)Ĵs(0)〉

. (2.2.15)

For the two-point function of the currents one has in d = 4, according to (2.1.12):

〈ĴsĴs〉 = 2N
1

(4π2)2

(2x̂)2s

(x2)2s+2

πΓ(2s+ 1)Γ(s+ 1)

s!(Γ(1/2))2
= 2N

(2s)!

(4π2)2

(2x̂)2s

(x2)2s+2
(2.2.16)

for the singlet and similarly

〈Ĵ (ij)
s Ĵ (kl)

s 〉 = (δikδjl + δikδjl − 2

N
δijδkl)

(2s)!

(4π2)2

(2x̂)2s

(x2)2s+2
(2.2.17)

〈Ĵ [ij]
s Ĵ [kl]

s 〉 = (δikδjl − δikδjl) (2s)!

(4π2)2

−(2x̂)2s

(x2)2s+2
(2.2.18)

where we used the fact that the singlet and symmetric traceless representations exist for even spins

only, and the antisymmetric one for odd spins.

To obtain the anomalous dimensions via eq. (2.2.15), we have to compute the two-point function of

the descendant at tree level. Each descendant (2.2.12) consists of a differential operator acting on four

φ fields. We simply have to compute the free field Wick contractions between the fields (contractions

of fields on the same descendant are of course excluded)

〈φi(x1)φj(x2)φm(x3)φm(x4) , φk(y1)φl(y2)φn(y3)φn(y4)〉0 (2.2.19)

and then act with the differential operator in (2.2.12) on the resulting product of free propagators,

setting x1,2,3,4 → x and y1,2,3,4 → 0 at the end. It is straightforward to do this for any given spin: the

problem is purely algebraic and there are no integrals to compute. However, to obtain a general result

as a function of spin, it is convenient to use the Schwinger representation (2.1.10) of the propagator

and carry out the resulting integrals of products of Gegenbauer polynomials. Some technical details

of this are collected in Appendix 2.7. The final result takes the following form. For even spins, based

on symmetry we get the structure

〈K̂ij
s−1K̂

kl
s−1〉 = (AsN + Cs)

δikδjl + δilδjk

2
+Bsδ

ijδkl , s = 2, 4, 6, . . . (2.2.20)
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and similarly for odd spins

〈K̂ij
s−1K̂

kl
s−1〉 = (A′sN + C ′s)

δikδjl − δilδjk

2
, s = 1, 3, 5, . . . (2.2.21)

The As (and A′s) terms come from contracting the first pair of φ fields at different points with each

other and the second pair as well (hence the O(N) indices form a closed loop); the Bs term is from

contracting the pairs across (pair one with pair two and vice-versa); the Cs (and C ′s) term is from

contracting one φ from the first pair with one from the second one (so that the O(N) indices thread

the diagram without loops). The final result for the coefficients As, Bs, Cs, A
′
s, C

′
s is:

As = −(s− 1)s(s+ 1)(s+ 2)(2s)!
(2x̂)2s−2

(x2)2s+2(4π2)4

Bs = 4s(s+ 1)(2s)!
(2x̂)2s−2

(x2)2s+2(4π2)4

Cs = −2(s− 2)s(s+ 1)(s+ 3)(2s)!
(2x̂)2s−2

(x2)2s+2(4π2)4

A′s = −As , C ′s = 2As

(2.2.22)

From (2.2.20) and (2.2.21), we can readily extract the singlet, symmetric traceless and antisym-

metric parts. They are

〈K̂s−1K̂s−1〉 = (As +Bs)N
2 + CsN

〈K̂(ij)
s−1K̂

(kl)
s−1〉 =

AsN + Cs
2

(
δikδjl + δikδjl − 2

N
δijδkl

)
〈K̂ [ij]

s−1K̂
[kl]
s−1〉 = −As

2
(N + 2)

(
δikδjl − δikδjl

)
.

(2.2.23)

It is now straightforward to extract the one-loop anomalous dimensions, using the general formula

(2.2.15) and the normalization of the currents (2.2.16), (2.2.18). For the singlet operators, we get3

γs =
ε2(N + 2)

2(N + 8)2

(
1− 6

s(s+ 1)

)
(2.2.24)

This vanishes for s = 2 as it should, corresponding to the conservation of the stress-energy tensor.

3It is amusing that the spin dependent factor in brackets in (2.2.24) is the same as the central charge of the unitary
minimal models M(s, s + 1), which have c = 0, 1/2, 7/10, . . . for s = 2, 3, 4, . . .. Similarly, the result (2.2.26) for the
antisymmetric representation is proportional to the central charge c = 3

2
(1− 8/(p(p+ 2))) of the N = 1 supersymmetric

minimal models for p = 2s. One may wonder if there is a deeper significance to these apparent coincidences. We thank
Igor Klebanov for bringing this to our attention.

23



For the symmetric traceless operators, we get

γs(ij) =
ε2(N + 2)

2(N + 8)2

(
1− 2(N + 6)

(N + 2)s(s+ 1)

)
(2.2.25)

and for the antisymmetric ones

γs[ij] =
ε2(N + 2)

2(N + 8)2

(
1− 2

s(s+ 1)

)
. (2.2.26)

The latter vanishes for s = 1, corresponding to the exact conservation of the current in the adjoint of

O(N). All these results are in agreement with [44].

It is worth mentioning the s → ∞ behavior analysis of these results done in [39, 40], in light of

(1.4.12). First of all, we see that the limiting value is equal to ε2(N+2)
2(N+8)2 = 2γφ as follows from expanding

(1.4.12) to order ε. Second, the leading correction behaves as 1
s2 , which is a manifestation of having

a tower of operators with twist 2, which at this order in ε are the higher-spin currents and the φiφi

operator (see [39] for more details). As mentioned, the coefficient cτmin is determined by the certain

three-point functions of these operators with φ. We will go into more detail about this in the next

two sections.

2.3 The large N critical O(N) model

To develop the 1/N expansion of the φ4 theory, one may introduce a Hubbard-Stratonovich auxiliary

field σ, so that the action (2.2.1) may be rewritten as

S =

∫
ddx
(1

2
∂µφ

i∂µφi +
1

2
σφiφi − σ2

4λ

)
. (2.3.1)

In the IR limit for d < 4, the last term becomes unimportant and can be dropped.4 To develop

perturbation theory, it is convenient to rescale σ so that the action becomes

S =

∫
ddx
(1

2
∂µφi∂

µφi +
1

2
√
N
σφiφi

)
. (2.3.2)

4For d > 4, the last term can be dropped in the UV limit, corresponding to a non-trivial UV fixed point.
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The σ field then acquires an effective non-local propagator upon integrating out φi5

〈σ(x1)σ(x2)〉 =
Cσσ

(x2
12)2

, Cσσ =
2d+2Γ(d2 −

1
2 ) sin(πd/2)

π
3
2 Γ(d2 − 2)

(2.3.3)

so that σ, which replaces the scalar operator φiφi, is a primary operator of dimension 2 + O(1/N)

at the interacting fixed point. Systematic perturbation theory can be developed using this effective

propagator, the canonical propagator (2.2.3) for φi and the σφiφi vertex, with 1/
√
N playing the role

of the coupling constant.

The equation of motion for φ is

∂2φi =
1√
N
σφi (2.3.4)

and the equation of motion for σ is formally φiφi = 0 after we drop the last term of (2.3.2) in the IR

limit. The role of this equation is to “subtract” from the theory the operator φiφi, which is replaced

by σ. This fact will play an important role in our calculation below.

Before turning to the higher spin currents let us calculate as a warmup the anomalous dimension

γφ of the φ field, without computing Feynman diagrams. Using the equations of motion (2.3.4) and

acting on the φ two-point function with ∂2
1∂

2
2 , we get

1

N
(x2

12)2 〈φiσ(x1)φjσ(x2)〉
〈φi(x1)φj(x2)〉

= 2γφ(γφ + 1)(d− 2 + 2γφ)(d+ 2γφ). (2.3.5)

From this, the leading order value of γφ immediately follows

γφ =
Cσσ

4Nd(d− 2)
=

2 sin(πd/2)Γ(d− 2)

NπΓ(d2 − 2)Γ(d2 + 1)
(2.3.6)

which is a well-known result. It is quite remarkable how simple the calculation is, provided we know

Cσσ. It is also helpful that one completely avoids (to the lowest order) the issues of regularization

and renormalization, which are actually somewhat thorny in the 1/N expansion.

Let us now turn to the higher spin currents. These have the same form (2.1.7), and using (2.1.17)

5The quadratic term in the resulting σ effective action is just proportional to the two-point function 〈φiφi(x)φjφj(y)〉0
in the free theory. The σ propagator is obtained by Fourier transforming to momentum space, inverting, and trans-
forming back to x-space.
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and the equations of motion (2.3.4), one ends up with

∂µD
µ
z Ĵ

ij
s =

1√
N
K̂ij
s−1 (2.3.7)

where

K̂ij
s−1 =

(
hs(∂̂1 + ∂̂3, ∂̂2) + (−1)shs(∂̂2 + ∂̂3, ∂̂1)

)
φi(x1)φj(x2)σ(x3)

∣∣∣
x1,2,3→x

, (2.3.8)

and the function hs(u, v) is given in eq. (2.1.18).6 It is possible, and convenient for what follows, to

decompose the descendant in products of the conformal primaries Ĵs, σ and their derivatives. We find

K̂ij
s−1 =

s−2∑
s′=0

s−s′−1∑
k=0

Cs′k∂̂
s−s′−k−1Ĵ ijs′ ∂̂

kσ (2.3.9)

where the coefficients Cs′k are given explicitly by

Cs′k =


(s− s′)(2s′ + d− 3)

(
s−s′−1

k

)(−s−s′+k−d+3
k+1

)
, s− s′ even

0 , s− s′ odd

(2.3.10)

An important point is that so far we have only used the φ equation of motion (2.3.4), and not the

equation for σ whose role is to formally project out J0 = φiφi from the theory. This implies that

in fact the form of the descendant (2.3.9) only applies as written to the non-singlet currents. For

the singlets, one obtains the correct descendant by the prescription that the term s′ = 0 should be

dropped from the sum. As an example, for s = 2 we get from (2.3.9)

K̂ij
1 = (d− 1)(d− 3)

(
(d− 2)Ĵ ij0 ∂̂σ − 2(∂̂Ĵ ij0 )σ

)
(2.3.11)

For the symmetric traceless K
(ij)
1 , on the right hand side we have Ĵ

(ij)
0 = φ(iφj) and the descendant

is non-vanishing. However, for the singlet we would have J0 = φiφi, which should be thrown away.

This leads to K̂1 = 0, as it should be according to the conservation of the stress-energy tensor. In a

similar way, the spin 3 descendant of the spin 4 singlet current is

K̂3 = (d+ 3)(d+ 1)
(
(d+ 2)Ĵ2∂̂σ − 2(∂̂Ĵ2)σ

)
(2.3.12)

6Note that the vanishing of hs at d = 3 is of course not meaningful, and just follows from the normalization of the
currents that we have chosen. Such factors of (d− 3) cancel out in the ratio 〈Ks−1Ks−1〉/〈JsJs〉.
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At d = 3, we see that K̂3 ∝ Ĵ2∂̂σ − 2/5(∂̂Ĵ2)σ, in agreement with [21].

We can now compute the anomalous dimensions using (1.4.11). Let us first discuss the case of the

non-singlet currents, where we can use directly the form (2.3.8), equivalent to (2.3.9). The descendant

two-point function can be computed similarly to the previous section and one ends up with

γs(ij) = γs[ij] = 2γφ
(s− 1)(d+ s− 2)

(d/2 + s− 2)(d/2 + s− 1)
, (2.3.13)

where γφ is the anomalous dimension of φ field. This is the correct result, in agreement [45]. Let us

now turn to the case of the singlet currents, which is slightly more involved due to the J0 projection

discussed above. The correct singlet descendant is given by (here as usual we denote by Js′ = J iis′ the

singlet operators)

K̂s−1 =

s−2∑
s′=2

s−s′−1∑
k=0

Cs′k∂̂
s−s′−k−1Ĵs′ ∂̂

kσ = K̂naive
s−1 − K̂0

s−1

K̂0
s−1 =

s−1∑
k=0

C0k∂̂
s−k−1Ĵ0∂̂

kσ

(2.3.14)

where K̂naive
s−1 coincides with (2.3.8), with O(N) indices traced. Its two-point function leads to a

contribution equal to (2.3.13) to the anomalous dimension. To subtract the contribution of the term

K̂0
s−1 proportional to J0, we note that

〈K̂naive
s−1 K̂naive

s−1 〉 = 〈K̂s−1K̂s−1〉+ 〈K̂0
s−1K̂

0
s−1〉 (2.3.15)

since K̂s−1 and K̂0
s−1 are orthogonal, due to orthogonality of the spin s primaries (〈JsJs′〉 ∼ δss′).

Then, the correct singlet anomalous dimension is obtained by simply subtracting from (2.3.13) the

contribution of the two-point function 〈K̂(0)
s−1K̂

(0)
s−1〉. By this procedure, we get the final result

γs = 2γφ
1

(d/2 + s− 2)(d/2 + s− 1)

[
(s− 1)(d+ s− 2)− Γ(d+ 1)Γ(s+ 1)

2(d− 1)Γ(d+ s− 3)

]
, (2.3.16)

in agreement with [45]. One may also check that setting d = 4 − ε, (2.3.16) and (2.3.13) precisely

match the results (2.2.24), (2.2.25), (2.2.26) expanded to order 1/N .
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It is again interesting to mention the s→∞ behavior [39,40]. The expansion at large s yields

γs = 2γφ − 2γφ
Γ(d+ 1)

2(d− 1)

1

sd−2
− 2γφ

d(d− 2)

4

1

s2
+ ...,

γs(ij) = 2γφ − 2γφ
d(d− 2)

4

1

s2
+ ...

(2.3.17)

We see a tower of higher spin currents (1/sd−2) in the singlet channel, as well as the σ (1/s2) in both

the singlet and the traceless parts. The higher-spin contribution vanishes for the symmetric traceless.

The 1/s2 coming from σ is universal and can be calculated. Using (1.4.13) and plugging O = φ,

Oτmin = σ such that ∆ = d/2 − 1, τmin = 2, COτminOτmin is the three-point function coefficient of

φφσ, Cφφ = Γ(d/2−1)
4πd/2 , Cσσ is defined above. Putting all the factors together, the coefficient of 1/s2 is

exactly reproduced.

2.4 Cubic models in d = 6− ε

let us consider the following model with N + 1 scalars and O(N) invariant cubic interactions

S =

∫
ddx
(1

2
∂µφ

i∂µφi +
1

2
(∂µσ)2 +

g1

2
σφiφi +

g2

6
σ3
)
. (2.4.1)

As argued in [30], in d = 6 − ε this model possesses IR stable, perturbatively unitary fixed points

which provide a “UV completion” of the large N UV fixed points of the O(N) model in d > 4.

This proposal has passed various non-trivial checks [30, 49, 50]. These perturbative fixed points exist

for N > 1038(1 + O(ε)), and are expected to be unitary to all orders in ε and 1/N expansions.

However, non-perturbative effects presumably render the vacuum metastable via instanton effects. In

this section we just perform perturbative calculations, and in particular we obtain further non-trivial

agreement with the large N expansion in d > 4. 7

In this model, a novel feature in the calculation of the anomalous dimension of the higher spin

operators is that the free theory contains two independent towers of conserved, O(N) singlet, higher

7Calculations of anomalous dimensions of higher spin operators in a similar cubic model with an adjoint scalar and
trφ3 interaction were carried out in [51,52].
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spin currents:

Ĵs,φ =
1√
N

(∂̂1 + ∂̂2)sC3/2
s

( ∂̂1 − ∂̂2

∂̂1 + ∂̂2

)
φi(x1)φi(x2)

∣∣∣
x1,x2→x

Ĵs,σ = (∂̂1 + ∂̂2)sC3/2
s

( ∂̂1 − ∂̂2

∂̂1 + ∂̂2

)
σ(x1)σ(x2)

∣∣∣
x1,x2→x

(2.4.2)

where we have normalized Js,φ so that both currents have 〈JsJs〉 ∼ O(1). Once interactions are

turned on, we expect these operators to mix non-trivially, and one should determine the appropriate

eigenstates of the dilatation operator.

The equations of motion are

∂2φi = g1σφ
i

∂2σ =
1

2
(g1φ

iφi + g2σ
2) .

(2.4.3)

It is evident that the equations of motion will induce the mixing between the currents, since 〈∂ ·Js,φ∂ ·

Js,σ〉 6= 0 due to the g1-dependent interactions in (2.4.3). The descendant operators (in this case we

find it more convenient to include the coupling constants into the definition of the Ks−1’s)

∂µD
µ
z Ĵs,φ = K̂s−1,φ , ∂µD

µ
z Ĵs,σ = K̂s−1,σ (2.4.4)

can be computed in a straightforward way by following similar steps as in the previous sections.

Explicitly, they are given by

K̂s−1,φ =
1√
N

(
hs(∂̂1 + ∂̂3, ∂̂2) + 1↔ 2

)
g1φ

i(x1)φi(x2)σ(x3)
∣∣∣
x1,2,3→x

(2.4.5)

K̂s−1,σ =
(
hs(∂̂1 + ∂̂3, ∂̂2) + 1↔ 2

)(g1

2
φi(x1)σ(x2)φi(x3) +

g2

2
σ(x1)σ(x2)σ(x3)

) ∣∣∣
x1,2,3→x

hs(u, v) = 6(u+ v)s−1
[
C

5/2
s−1

(u− v
u+ v

)
− 5v

u+ v
C

7/2
s−2

(u− v
u+ v

)]
We can then use the general relation (1.4.11), suitably generalized to the present case with non-trivial

mixing, to obtain the following anomalous dimension mixing matrix

 g2
1

48·4π3 (1− 6
(s+1)(s+2) ) − g2

1

4π3
1

8(s+1)(s+2)

√
N

− g2
1

4π3
1

8(s+1)(s+2)

√
N

g2
1

4π3
1

2·48N +
g2
2

2·48·4π3 (1− 12
(s+1)(s+2) )

 (2.4.6)

where the non-diagonal terms comes from the non-zero two-point function 〈K̂s−1,φK̂s−1,σ〉. From this

mixing matrix, one can compute the two eigenvalues to leading order in ε and finite N , using the

expression for the fixed point couplings given in [30]. The resulting finite N expressions are easy to
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get, but rather lengthy. At large N , using the expressions for the fixed point couplings [30]

g∗1 =

√
6ε(4π)3

N

(
1 +

22

N
+

726

N2
− 326180

N3
+ . . .

)
(2.4.7)

g∗2 = 6

√
6ε(4π)3

N

(
1 +

162

N
+

68766

N2
+

41224420

N3
+ . . .

)
(2.4.8)

one finds that the eigenvalues are given by

γ1 =
2ε

N

(s− 2)(s+ 5)(s2 + 3s+ 8)

(s+ 1)2(s+ 2)2
+O(1/N2)

γ2 = ε+
16ε

N

5s4 + 30s3 + 38s2 − 21s− 25

(s+ 1)2(s+ 2)2
+O(1/N2)

(2.4.9)

The higher order corrections can be obtained to any desired order, but for simplicity we have listed

here only the leading order in 1/N . We see that the γ1 eigenvalue vanishes at s = 2, and one can

check that this is true for any N . This eigenvalue then corresponds to the tower of “single-trace”

higher spin currents which include the stress-energy tensor. Indeed, one can explicitly verify that γ1

matches the 1/N expansion result (2.3.16) expanded in d = 6 − ε. The dimension corresponding to

the second eigenvalue is

∆2 = d− 2 + s+ γ2 = 4 + s+
16ε

N

5s4 + 30s3 + 38s2 − 21s− 25

(s+ 1)2(s+ 2)2
+O(1/N2) (2.4.10)

which suggests that this should match the “double-trace” operator σ∂sσ ∼ φ2∂sφ2 in the large N

approach. Indeed, one can match (2.4.10) with the result given in [45] for the dimension of such

composite operators of spin s. For s = 0, this is the scalar operator σ2 of the large N model, which

has dimension ∆ = 4− 100ε/N + . . . near d = 6 and corresponds to a particular mixture of the mass

operators φiφi and σ2 in the cubic model [30].

One can also study the spin s operators in the symmetric traceless and antisymmetric represen-

tations of O(N), where no mixing occurs (since Ĵs,σ is a singlet of O(N)). Following similar steps to

the previous sections, we obtain the result

γs(ij) = γs[ij] =
(g∗1)2

192π3

(s− 1)(s+ 4)

(s+ 1)(s+ 2)
=

2ε

N
(1 +

44

N
+ . . .)

(s− 1)(s+ 4)

(s+ 1)(s+ 2)
(2.4.11)

The order 1/N is seen to exactly match the large N result (2.3.13). Furthermore, we checked that
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the 1/N2 term also matches with the result obtained in [53] using large N methods for arbitrary d.8

Let us now study the large spin limit of these results. For the eigenvalues of the singlet mixing

matrix, the large spin expansion can be written in a simple form, valid for finite N , in terms of the

fixed point couplings

γ1 =
(g∗1)2

192π3
− (g∗1)2

32π3

1

s2
+ . . . ,= 2γφ −

(g∗1)2

32π3

1

s2
+ . . .

γ2 =
(g∗1)2N + (g∗2)2

384π3
− (g∗2)2

32π3

1

s2
+ . . . = 2γσ −

(g∗2)2

32π3

1

s2
+ . . .

(2.4.12)

where we have used the known expression for the one-loop anomalous dimensions of φ and σ in

the cubic model [30]. The leading terms are precisely consistent with the expected large spin limit.

The subleading 1/s2 contributions are clearly coming from the exchange of the σ field, which has

∆σ = τ = 2. We can check explicitly the prediction of the formula (1.4.13) for the coefficients of the

1/s2 terms. For the γ1 eigenvalue, we should take that O = φ,Oτmin = σ. The two-point function

coefficients are Cφφ=Cσσ = 1
4π3 . The three point function coefficient is given at the lowest order by

a diagram with one g1φ
iφi vertex in the middle. The diagram is given by the integral:

g1

(4π3)3

∫
d6x0

x4
10x

4
20x

4
30

=
g1

(4π3)3

π3

x2
12x

2
23x

2
31

(2.4.13)

Combining the factors we get cτmin = 2
(g∗1 )2

(43π6)2 (4π3)3 =
(g∗1 )2

32π3 . Overall, we then get

τs,φ = d− 2 +
(g∗1)2

192π3
− (g∗1)2

32π3

1

s2
+ . . . = 2τφ −

(g∗1)2

32π3

1

s2
+ . . . (2.4.14)

since τφ = ∆φ = d/2 − 1 +
(g∗1 )2

384π3 to the leading order. The same applies for the eigenvalue γ2,

corresponding to τs,σ, where we get:

τs,σ = d− 2 +
(g∗1)2N + (g∗2)2

384π3
− (g∗2)2

32π3

1

s2
+ . . . = 2τσ −

(g∗2)2

32π3

1

s2
+ . . . (2.4.15)

where τσ = ∆σ = d/2 − 1 +
(g∗1 )2N+(g∗2 )2

768π3 is the leading order dimension (and thus twist) of σ. The

coefficient of 1/s2 is reproduced the three-point function 〈σσσ〉.

The cubic model in d = 6−ε also admits non-unitary fixed points which are of interest in statistical

mechanics. The simplest case is the N = 0 model, which just consists of a single scalar field σ with

8As far as we know, the 1/N2 term in the large N expansion of the anomalous dimensions of the singlet higher spin
operators has not been obtained in the literature.
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cubic interaction g2/6σ
3. This model has a non-unitary fixed point at

(g∗2)2 = −128π3

3
ε+O(ε2) (2.4.16)

As pointed out by Fisher [54], this theory is related to the Lee-Yang edge singularity of the Ising

model. For d = 2 (ε = 4), the fixed point corresponds to the non-unitary minimal model M(2, 5).

Using the result (2.4.6) for g1 = 0, N = 0, we can deduce the dimension of the higher spin operators

∼ σ∂sσ in the Fisher model to be

γs = 2γσ

(
1− 12

(s+ 1)(s+ 2)

)
= − ε

9

(
1− 12

(s+ 1)(s+ 2)

)
+O(ε2) . (2.4.17)

where we have used γσ =
(g∗2 )2

768π3 at one loop.

Another interesting non-unitary model is obtained at the formal value N = −2. In this case the

model is equivalent to a theory of a complex anticommuting scalar θ and a commuting scalar σ [55]

S =

∫
ddx

(
∂µθ∂

µθ̄ +
1

2
(∂µσ)

2
+ g1σθθ̄ +

1

6
g2σ

3

)
. (2.4.18)

with Sp(2) global symmetry. The IR stable fixed point occurs at [55]

g∗2 = 2g∗1 , g∗1 = i

√
(4π)3ε

5
(1 +O(ε)) , (2.4.19)

where the first equality holds to all orders in perturbation theory. For such a relation between

couplings, one can verify that the model has an enhanced “supersymmetry” OSp(1|2) which implies

that the dimension of θ and σ are equal. It turns out that this OSp(1|2) invariant fixed point is

equivalent to the q → 0 limit of the q-state Potts model [56]. The dimension of the Sp(2) invariant

higher spin currents at the fixed point can be obtained from (2.4.6) setting N = −2 and g2 = 2g1.

This yields the two eigenvalues

γ1 =
(g∗1)2

192π3

(s− 2)(s+ 5)

(s+ 1)(s+ 2)
= − ε(s− 2)(s+ 5)

15(s+ 1)(s+ 2)

γ2 =
(g∗1)2

192π3

(s(s+ 3)− 16)

(s+ 1)(s+ 2)
= − ε(s(s+ 3)− 16)

15(s+ 1)(s+ 2)

(2.4.20)

We see that the first eigenvalue corresponds to the tower which includes the stress tensor of the theory,
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since it vanishes at s = 2 (this eigenvalue corresponds to an OSp(1|2) singlet). In the large spin limit

one gets

γ1 = − ε

15
+

4ε

5s2
+ . . .

γ2 = − ε

15
+

6ε

5s2
+ . . . .

(2.4.21)

The equality of the leading terms is a consequence of ∆θ = ∆φ, as follows from the OSp(1|2) symmetry.

One may also obtain the dimension of the non-singlet currents, which are the same as in (2.4.11), with

g1 given in (2.4.19).

2.5 Nonlinear sigma model

It is well established that the critical behavior of the O(N) φ4 model can be related to the critical

nonlinear sigma model, see e.g. [57] for a review. One of the ways to understand this relation is via

the 1/N expansion, which provides an explicit “interpolation” between the UV fixed points of the

sigma model in d = 2 + ε and the IR fixed points of the φ4 model in d = 4 − ε. In this section,

we calculate the anomalous dimensions of the higher-spin currents at the critical point of the sigma

model in d = 2 + ε, at finite N . As far as we know, this result has not been obtained elsewhere.

We start with the action with an auxiliary field inserted to resolve the sphere constraint on the φi

field, φiφi = 1/g2

S =

∫
ddx
(1

2
∂µφ

i∂µφi + σ(φiφi − 1

g2
)
)
. (2.5.1)

To develop perturbation theory, one may resolve the constraint by introducing a set of N − 1 inde-

pendent fields. A convenient parametrization is

φa = ϕa, a = 1, . . . , N − 1;

φN =
1

g

√
1− g2ϕaϕa =

1

g
− g

2
ϕaϕa +O(g3).

(2.5.2)

In terms of the ϕa fields, the action is

S =

∫
ddx
(1

2
∂µϕ

a∂µϕa +
g2

2

(ϕa∂µϕ
a)2

1− g2ϕaϕa

)
(2.5.3)
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To leading order in perturbation theory and in d = 2 + ε, the coupling constant has the beta function

β =
ε

2
g − (N − 2)

g3

4π
(2.5.4)

and there is a UV fixed point at [58,59]

g2
∗ =

2πε

N − 2
(2.5.5)

The factor of N −2 is due to the fact that the O(2) model is conformal and has a trivial beta function

in d = 2. Consequently, the perturbative UV fixed point in d = 2 + ε only exists for N > 2.

Before moving onward to the higher spin operators, we will calculate the anomalous dimension of

the ϕ field (or equivalently φi in the action (2.5.1)) using the classical equations of motion. To leading

order in g, they are given by9

∂2ϕa = −g2ϕa∂µϕ
b∂µϕ

b +O(g4) . (2.5.6)

In full analogy with the discussion in d = 4 − ε, we can apply the equations of motion (2.5.6) to the

two-point function of ϕ field, obtaining

g4x4 〈ϕa(∂µϕ
c)2(x)ϕb(∂µϕ

d)2(0)〉
〈ϕa(x)ϕb(0)〉

= 4γφ(γφ + 1)(d− 2 + 2γφ)(d+ 2γφ) . (2.5.7)

To specialize to the expansion in d− 2 = ε we need to mention several important points: γ will be of

the order ε and not ε2, unlike in d = 4− ε. This means that the third term in the right-hand side is

of the order ε as well. Second, the bare propagator is

〈ϕa(x)ϕb(0)〉 =
Γ( ε2 )

4ππε/2(x2)ε
, (2.5.8)

and applying derivatives to it produces powers of ε. They will combine with Γ(ε/2) = 2
ε + O(1).

Since g4
∗ ∼ ε2 at the critical point, only terms of order ε2 are needed from the two-point function in

the numerator, since we have three Γ′s on top and one on bottom, which amounts to 1/ε2. Having

said that, the relevant term of the two-point function is easy to calculate. The first and the second

9These may be also obtained starting from the equations of motion coming from (2.5.1), which are ∂2φi =
−g2φi∂µφj∂µφj , and resolving the constraint by (2.5.2).
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derivatives of the propagator are:

∂µ
1

(x2)ε/2
= −ε xµ

(x2)ε/2
, (2.5.9)

∂ν∂µ
1

(x2)ε/2
=

−ε
(x2)ε/2+1

(
δµν −

2xµxν
x2

)
+ ε2

xµxν
(x2)ε/2+2

. (2.5.10)

It is evident then that the only way to get O(ε2) is to contract ϕa and ϕb which would be undifferen-

tiated, and the other ϕ’s accordingly so that the ε from (2.5.10) is picked up two times. Overall one

gets for the left hand side of (2.5.7)

g4
∗(N − 1)

2 · 2 · ε2

(4π)2

22

ε2
= (N − 1)

4ε2

(N − 2)2
. (2.5.11)

The right-hand side of (2.5.7) yields 8γφ(ε+2γφ) to leading order in ε. Solving the resulting quadratic

equation for γφ gives

γφ =
ε

2(N − 2)
, (2.5.12)

which is the well-known result [58,59].

Let us now move to the higher spin operators, restricting to the case of the O(N) singlets. The

form of the higher spin currents is most easily written in terms of the constrained fields φi, i = 1, . . . , N

appearing in the action (2.5.7). In terms of these fields, they take the same form (2.1.7)

Ĵs = (∂̂1 + ∂̂2)sC−1/2
s

( ∂̂1 − ∂̂2

∂̂1 + ∂̂2

)
φi(x1)φi(x2)

∣∣∣
x1,x2→x

. (2.5.13)

where we have set d = 2 since we will only perform a leading order calculation.

It turns out that due to the properties of C
−1/2
s (x), in the currents (2.5.13) all terms have both

φi(x1) and φi(x2) differentiated at least once, so that after resolving the constraint (2.5.2), we have

in terms of ϕa

Ĵs = (∂̂1 + ∂̂2)sC−1/2
s

( ∂̂1 − ∂̂2

∂̂1 + ∂̂2

)(
ϕa(x1)ϕa(x2) +

g2

4
ϕaϕa(x1)ϕbϕb(x2)

)∣∣∣
x1,x2→x

+O(g4) (2.5.14)

One may check, for instance, that for s = 2 this yields the correct stress tensor coming from (2.5.3).

The reason that we have to keep the term of order g2 is that, when we compute the descendant by

∂µD
µ
z Ĵs, both terms in (2.5.14) yield a contribution of order g2 (because the first term is a conserved
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current at g = 0, but the second is not). Using the general equation (2.1.17), we have (recall that s

is even)

∂µD
µ
z Ĵs =

(
hs(∂̂1, ∂̂2)∂2

1 + hs(∂̂2, ∂̂1)∂2
2

)(
ϕa(x1)ϕa(x2) +

g2

4
ϕaϕa(x1)ϕbϕb(x2)

) ∣∣∣
x1,x2→x

. (2.5.15)

When acting with ∂2 on the first term, we use the equation of motion (2.5.6). When acting on the

second term, on the other hand, we can actually use the free equation of motion ∂2ϕa = 0 to this

order, so that ∂2
1ϕ

aϕa(x1) = 2∂µϕ
a∂µϕa. The final result for the descendant to order g2 can then be

written in the form

∂µD
µ
z Ĵs = g2K̂s−1

K̂s−1 = −
(
hs(∂̂1 + ∂̂3 + ∂̂4, ∂̂2) + hs(∂̂2 + ∂̂3 + ∂̂4, ∂̂1)− hs(∂̂4 + ∂̂3, ∂̂1 + ∂̂2)

)
×

× ∂3µ∂4µϕ
a(x1)ϕa(x2)ϕb(x3)ϕb(x4)

∣∣∣
x1,2,3,4→x

hs(u, v) = 2v(u+ v)s−2C
3/2
s−2(

u− v
u+ v

)

(2.5.16)

Note that all O(N) indices here run from 1 to N − 1. The rest of the calculation is almost exactly

the same as in the d = 4 − ε case. Computing the descendant two-point function, using (1.4.11) for

d = 2 and the current two-point function (2.1.14) (with N → N − 1), we find the result

γs =
g4
∗

4π2
(N − 2)

(
1

s
− 1

2
+Hs−2

)
=

ε2

N − 2

(
1

s
− 1

2
+Hs−2

)
(2.5.17)

where Hk =
∑k
n=1 1/n is the harmonic number. The 1/N expansion of this result precisely matches

the expansion of (2.3.16) in d = 2 + ε. In the large spin limit, we see the logarithmic behavior (since

Hk ∼ log(k) at large k)

γs =
ε2

N − 2

(
log(s) + γ − 1

2
− 1

2s
+O(1/s2)

)
. (2.5.18)

Also, we note that the leading order in γs is ε2, although the leading order anomalous dimension of

the φ field is ε (2.5.12). This may seem to contradict the expected s → ∞ behavior. The simple

resolution of this “paradox” is suggested by looking at the large N result (2.3.17) for the singlet
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currents, expanded near d = 2 + ε:

γs =
ε

N
− ε

N

Γ(3 + ε)

2(1 + ε)

1

sε
+ ... =

ε2

N
log(s) + ... (2.5.19)

We see that for the singlets the 2γφ term is canceled by the expansion of the second term, coming from

the higher-spin current tower, and the log(s) is exactly what one gets from expanding the harmonic

number Hs−2. As for the non-singlet operators, from (2.3.17) one gets γs(ij) = ε
N + O( 1

s2 ), and it is

evident that the leading order is indeed 2γφ as expected [39,40,46–48]. Thus, a finite N calculation of

the anomalous dimensions of the non-singlet operators should yield a result starting at order ε, unlike

(2.5.17). We leave the more detailed discussion of the non-singlet currents for future work.

2.6 Some d = 3 estimates

For the O(N) models with N ≥ 3, we can combine the information from the d = 4− ε and d = 2 + ε

expansions to obtain some estimates for the anomalous dimensions of the singlet higher spin currents

in d = 3. The simplest way to do this is to use a “two-sided” Padé approximant. For any given

physical quantity assumed to be a continuous function of dimension d, we can construct the Padé

approximant

Padé[m,n](d) =
A0 +A1(4− d) +A2(4− d)2 + . . .+Am(4− d)m

1 +B1(4− d) +B2(4− d)2 + . . .+Bn(4− d)n
, (2.6.1)

where the coefficients are fixed by matching the known perturbative expansions in d = 4 − ε and

d = 2 + ε. Rather than performing this procedure on γs(d) itself, guided by the expected large spin

behavior [39,40,46–48], we find it more convenient to consider the quantity

fs(d) = γs(d)− 2γφ(d) (2.6.2)

From the results (2.2.24), (2.5.17), we can obtain the ε expansion of this quantity to order ε2. Further

information in d = 4−ε can be obtained using the result of [51], who derived the anomalous dimensions

of the higher spin operators in the O(N) theory to order ε3.10 For the singlet currents, it reads

γs =
(N + 2)λ2

(
s2 + s− 6

)
128π4s(s+ 1)

10For N = 1, the result is known to order ε4 [60].
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−
(N + 2)(N + 8)λ3

(
16s(s+ 1)Hs + s

(
s3 + 2s2 − 39s− 16

)
+ 12

)
4096π6s2(s+ 1)2

+O(λ4) (2.6.3)

where Hs is the harmonic number. This vanishes at s = 2, as expected. It is also interesting to check

the large spin behavior, which yields (using the known result for γφ to order λ3, see e.g. [61])

γs = 2γφ −
(N + 2)

(
12π2λ2 + (N + 8)λ3 (log(s)− γ − 5/2)

)
256π6s2

+O(1/s3) . (2.6.4)

We see that a logarithmic term arises at subleading order in the coupling constant, consistently with

general expectations [39,62]. Using the value of the critical coupling [61]

λ∗ =
8π2ε

N + 8
+

24π2(3N + 14)ε2

(N + 8)3
+ . . . (2.6.5)

we can obtain the ε expansion of γs around d = 4 to order ε3. Further using the ε expansions of γφ

near d = 2 and d = 4, we can get the function f(d) defined in (2.6.2) to the same order

fs(4− ε) = − 3ε2(N + 2)

s(s+ 1)(N + 8)2
+O(ε3)

fs(2 + ε) =

(
− ε

N − 2
+

(N − 1)ε2

(N − 2)2

)
+

ε2

N − 2
(
1

s
− 1

2
+Hs−2) +O(ε3)

(2.6.6)

where for simplicity we did not write explicitly the O(ε3) in d = 4− ε, it can be read off from (2.6.4).

This allows to construct Padé approximants (2.6.1) with a maximum value n + m = 6. Carrying

out this procedure for general N , we find that Padé[3,2] (which only uses f(4 − ε) to order ε2) and

Padé[4,2] appear to give the best agreement with the analytic large N result (2.3.16) over the full

range 2 ≤ d ≤ 4, with Padé[3,2] in fact working slightly better. Using this approximant, we obtain a

d = 3 estimate for the function fs(d) in (2.6.2). To obtain the anomalous dimensions γs, we can then

add back the contribution 2γφ using the best available estimates that were collected in Table 2 of [63]

for a few low values of N . The results of this procedure for s = 4, 6, 8, 10 and for several values of N

are listed in the table below. For comparison, the large N formula (2.3.16) gives for d = 3

γs =
16(s− 2)

(2s− 1)3π2

1

N
+O(1/N2) . (2.6.7)

Using this for N = 20, one would get γ4 = 0.0077, γ6 = 0.0098, γ8 = 0.0108, γ10 = 0.0114. The results

for s = 4 given in Table 2.1 appear to be consistent with the ones given in [66].
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N 3 4 5 6 10 20
γs=4 (Padé[3,2]) 0.0261 0.0257 0.0208 0.0195 0.0158 0.0082
γs=6 (Padé[3,2]) 0.0318 0.0310 0.0258 0.0240 0.0191 0.0100
γs=8 (Padé[3,2]) 0.0342 0.0332 0.0278 0.0259 0.0206 0.0110
γs=10 (Padé[3,2]) 0.0353 0.0343 0.0289 0.0269 0.0214 0.0115

Table 2.1: Padé estimates for the anomalous dimensions of the singlet currents with s = 4, 6, 8 in the
3d critical O(N) models. The estimates are obtained by constructing a “two-sided” Padé approximant
of the function (2.6.2) and adding at the end the contribution 2γφ using the available results collected
in [63]. For N = 10, 20, the value of γφ is obtained from the large N result known to order 1/N3 [64,65].

For N = 1 and N = 2, the nonlinear sigma model result cannot be used since there is no pertur-

bative fixed point in d = 2 + ε for these values of N . Simple Padé approximants of the d = 4− ε result

appear to yield poles in 2 < d < 4 in this case, so we will resort to the unresummed ε expansion to

obtain some estimates. For N = 1, setting ε = 1 in f(4 − ε) expanded to order ε3, and adding back

the 3d value of 2γN=1
φ = 0.0363 [67–70], we obtain the following d = 3 estimates

γN=1
s=4 = 0.0240 , γN=1

s=6 = 0.0300

γN=1
s=8 = 0.0324 , γN=1

s=10 = 0.0336 .

(2.6.8)

While we do not expect these to be high precision results, we observe that they appear to be quite

close to the estimates derived in [62]. For the spin 4 operator, [71] obtained the slightly lower value

γ4 = 0.0208(12). For N = 2, following a similar procedure and using 2γN=2
φ = 0.0381 [72], we obtain

γN=2
s=4 = 0.0252 , γN=2

s=6 = 0.0315

γN=2
s=8 = 0.0340 , γN=2

s=10 = 0.0353 .

(2.6.9)

In all cases, we observe that the anomalous dimensions of the higher spin operators is rather small

(similarly to what happens for the anomalous dimension of φ). From the results in Table 2.1, and

(2.6.8),(2.6.9), we also notice some non-monotonic behavior as a function of N , with a maximum

between N = 3 and N = 4. A qualitatively similar non-monotonic behavior can be observed in the

sphere free energy [73,74] and CT [63]. It would be interesting to understand better the origin of this

behavior and the relation between these quantities.
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2.7 Appendix: Technical details on the computation of the

descendant 2-point function

The calculation of the descendant two-point functions is carried out using the relation of Gegenbauer

polynomials to hypergeometric functions (see appendix of [75]). We will illustrate the technique to

calculate the function As (see eq. 2.2.20) as a function of s in terms of Gegenbauer integrals. The

calculation of the other structures is similar. After introducing the Schwinger parametrization, the hs

function can be written as:

hs(−2α1x̂− 2α3x̂− 2α4x̂,−2α2x̂) = (−1)s−1(2x̂)s−1(α1 + α2 + α3 + α4)sh̃s(1− 2α̃2);

α̃n =
αn

α1 + α2 + α3 + α4
, h̃s(x) = C

3/2
s−1(x)− 3(1− x)C

5/2
s−2(x)

(2.7.1)

and analogously for other arguments. The contraction is then compactly written as:

(−1)s−1(2x̂)2s−2

(4π2)4

∫ ∞
0

4∏
n=1

dαn(

4∑
n=1

αn)2s−2 exp(−x2
4∑

n=1

αn)(h̃s(1− 2α̃2) + (−1)sh̃s(1− 2α̃1))2

(2.7.2)

It is convenient to separate the integration other the sum
∑4
n=1 αn by introducing a delta function∫∞

0
dpδ(

∑4
n=1 αn − p):

∫ ∞
0

dpp2s−2+3 exp(−x2p)

∫ 1

0

4∏
n=1

dα̃nδ(

4∑
n=1

α̃n − 1)(h̃s(1− 2α̃2) + (−1)sh̃s(1− 2α̃1))2

=
(2s+ 1)!

(x2)2s+2

∫∫
0<1−α̃1−α̃2<1

dα̃1dα̃2(1− α̃1 − α̃2)(h̃s(1− 2α̃2) + (−1)sh̃s(1− 2α̃1))2 (2.7.3)

The goal now is to calculate the integral of functions h̃. First we study the integral of two h̃ with the

same argument: ∫ 1

0

dα̃(1− α̃)2(h̃s(1− 2α̃))2 (2.7.4)

The idea now is to employ the Rodrigues formula for the Gegenbauer polynomial:

Cνs (1− 2α̃) =
4s

s!

Γ(s+ ν)Γ(s+ 2ν)

Γ(ν)Γ(2s+ 2ν)
(α̃(1− α̃))−ν+1/2 ds

dα̃s
(α̃(1− α̃))s+ν−1/2 (2.7.5)
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We again split the integral into two parts:

∫ 1

0

dα̃(1− α̃)2
(
C

3/2
s−1(1− 2α̃)− 3(2α̃)C

5/2
s−2(1− 2α̃)

)
h̃s(1− 2α̃1) (2.7.6)

We now act on the second h̃ with the C
3/2
s−1 using the Rodrigues formula, integrating by parts s − 1

times. The boundary terms vanish thanks to the power of α̃(1−α̃) under the derivative. The prefactor

(α̃(1− α̃))−1 combines with (1− α̃)2 to 1
α̃ − 1. Then, since h̃s(1− 2α̃) is a polynomial of degree s− 1

in α̃:

h̃s(1− 2α̃) =

s−1∑
k=0

ckα̃
k, (2.7.7)

after s− 1 integrations by parts only two terms survive the differentiation

(−1)s−1 ds−1

dα̃s−1
cs−1α̃

s−1 = (−1)s−1(s− 1)!cs−1;

(−1)s−1 ds−1

dα̃s−1
c0

1

α̃
=

(s− 1)!

α̃s

(2.7.8)

The remaining integrals are now of the beta-function type, for instance,

∫ 1

0

dα̃cs−1(α̃(1− α̃))s∫ 1

0

dα̃c0(1− α̃))s
(2.7.9)

This is the main idea of the calculation, the rest is basically collecting all the coefficients and applying

the same method to the other integrals which will appear (all of them will be of the same type though).

For the sake of reference the coefficients of h̃s(1− 2α̃) are obtained most easily by using the relation

of Gegenbauer polynomials to the hypergeometric function:

Cνs (1− 2x) =
(2ν)s
s!

F
(
− s, s+ 2ν; ν +

1

2
;x) (2.7.10)

(this is the reason we used 1−2α̃ as the argument). After collecting all the factors, the overall answer

for the integral in (2.7.3) is:

(s− 1)s(s+ 1)(s+ 2)

8(2s+ 1)
(2.7.11)

41



Chapter 3

Anomalous dimensions in the

fermionic O(N) and U(N) models

3.1 Introduction and Summary

The Gross-Neveu (GN) model [76]

LGN = ψ̄i /∂ψ
i +

g

2
(ψ̄iψ

i)2 (3.1.1)

is a classic example of quantum field theory of interacting fermions. Here ψi, i = 1, . . . , Nf denotes

a collection of Nf Dirac fermions, so that the theory has a manifest U(Nf ) global symmetry. When

studied as a function of dimension d, there is evidence that the GN model describes a unitary inter-

acting CFT in 2 < d < 4, which corresponds to a non-trivial UV fixed point of (3.1.1). Despite the

fact that the quartic interaction is irrelevant, the model is formally renormalizable in the framework

of the 1/N expansion [77,78], and this approach can be used to compute various physical quantities at

the interacting fixed point as a function of d (with d = 3 being the physically interesting dimension),

see [57] and references therein for a comprehensive review. Another approach to the Gross-Neveu CFT

is the Wilson-Fisher ε-expansion: in d = 2 the four-fermi interaction is renormalizable, and working in

d = 2 + ε one finds UV fixed points which are weakly coupled for small ε. Critical exponents at these

fixed points can be computed by usual perturbation theory for finite Nf . In [79,80], it was suggested
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that the fermionic CFT in 2 < d < 4 admits yet another perturbative description near d = 4, in terms

of the Gross-Neveu-Yukawa theory

LGNY =
1

2
(∂µσ)2 + ψ̄i 6 ∂ψi + g1σψ̄iψ

i +
1

4!
g2σ

4 . (3.1.2)

Working in d = 4− ε, one finds stable IR fixed points for any Nf , and there is considerable evidence

that these fixed points correspond to the same CFT defined by the UV fixed point of the GN model.

The information from the various perturbative approaches to the fermionic CFT can be used to obtain

estimates for critical exponents and other physical quantities in the physical dimension d = 3, see for

instance [30,81–83].

When the interactions are turned off, the theory of Nf massless fermions defines a unitary CFT in

any dimension d. Being a free CFT, it enjoys an exact higher-spin (HS) symmetry and corresponding

exactly conserved currents of all spins which are constructed from fermion bilinears. In general d,

the spectrum of these currents is more involved than that of the free scalar CFT. There are totally

symmetric currents, but also currents in mixed-symmetry representations of SO(d) that are obtained

using the totally antisymmetric products γν1...νk of gamma matrices. Their explicit construction will

be discussed in section 3.2 below. In the free CFT, all these currents are conserved; they have exact

scaling dimension ∆ = d − 2 + s, where s is the spin, and belong to short representations of the

conformal algebra. When interactions are turned on, the currents acquire anomalous dimensions and

are no-longer exactly conserved (except for the stress tensor or spin 1 currents corresponding to the

global symmetry):

∂ · Js ∼ gKs−1 , (3.1.3)

where g is a parameter that controls the HS symmetry breaking. In the large N expansion we have

g ∼ 1/
√
N , and in the ε-expansion g is a power of ε, so that the HS symmetry is weakly broken at

large N or small ε. In the above equation, Ks−1 denotes an operator of spin s − 1 and dimension

d−1+s+O(g): this is the primary operator of the unbroken theory (g = 0) which recombines with Js

to form a long multiplet in the interacting theory. As reviewed in section 3.3.1, the non-conservation

equation (3.1.3) can be used to deduce the anomalous dimensions of the broken currents to leading

order in g, by computing correlators in the unbroken theory [22,23]. This method was applied recently

in [33, 84] to the scalar O(N) model in its large N and ε-expansions, and in [35] it was also used to

extract the 1/N anomalous dimensions of HS currents in the bosonic and fermionic 3d Chern-Simons
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vector models of [85, 86]. In this chapter, we will apply the same method to the critical GN model,

both in the large N expansion for any d, and in the ε-expansions near d = 2 and d = 4, and extract the

anomalous dimensions of weakly broken currents to leading order. At large N , we reproduce known

results obtained long ago by diagrammatic methods [87]. In d = 2+ε and d = 4−ε, as far as we know,

our results are new. In all cases, we find precise matching of ε-expansions and large N (including the

recent 1/N2 results of [88]) in their overlapping regime of validity, which provides a nice cross-check

of the various approaches to the interacting CFT.

In the context of the AdS/CFT correspondence, the free fermionic CFTd (restricted to its U(Nf )

singlet sector) should be holographically dual to the so-called “type B” higher-spin gravity theory

in AdSd+1, which includes towers of massless higher-spin gauge fields in one-to-one correspondence

with the conserved currents in the boundary CFTd.
1 In this context, the critical Gross-Neveu CFT

can be thought of as a “double-trace” deformation of the free theory, and it follows from general

arguments [31] that the AdS dual of the UV fixed point should be the same higher-spin gravity

theory, with the choice of alternate boundary condition (∆ = 1 instead of ∆ = d − 1) on the bulk

scalar field dual to the ψ̄ψ operator, in analogy with the original conjecture [29] in the case of the

O(N) model. With alternate boundary conditions in the bulk, the higher-spin fields are expected to

acquire masses at loop level, corresponding to the fact that the anomalous dimensions start at 1/N -

order on the CFT side. The role of the Higgs field in the bulk [32] is played by a two-particle state

with the appropriate quantum numbers, which should correspond to the operator appearing on the

right-hand side of the non-conservation equation (3.1.3). In the large N CFT this operator is indeed

of the double-trace type, and we will determine its explicit form in section 3.3.2. Schematically,

∂ · Js ∼
1√
N

∑
s′<s

∂nB(s′,1)∂
mJ0 , (3.1.4)

where B(s,1) denotes the mixed-symmetry current in the representation [s, 1, 0 . . . , 0] (dual to the

corresponding mixed-symmetry field in the bulk), and J0 denotes the scalar operator with ∆ = 1 +

O(1/N). In particular, this equation implies that the relevant bulk one-loop diagrams responsible for

the anomalous dimensions involve the cubic coupling of a totally symmetric field, a mixed-symmetry

field, and a scalar. It would be interesting to fix the form of these couplings directly in the bulk. Note

1Such type B theory is known at non-linear level only in the case of AdS4 in the form of Vasiliev equations [26],
see [89–91] for reviews with a focus on AdS/CFT applications. In general d, one can construct the spectrum and free
equations of motion of the bulk theory, and in principle reconstruct interactions order by order in perturbation theory,
but fully non-linear equations of motion of the Vasiliev type [26,28] are not known.
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that in d = 3 the mixed-symmetry fields are in fact related to the totally symmetric fields, due to

γµν = iεµνργρ, but this is not so in general d, and it would be interesting to study more generally

the 3-point couplings involving mixed-symmetry fields in the bulk. Note also that (3.1.4) contains

more information than just the anomalous dimensions of Js: for instance, it implies that the 3-point

functions 〈Js(x)B(s′,1)(y)J0(z)〉 break the Js current conservation (for s > s′) already at leading order

in N .

The methods we use to fix the HS anomalous dimensions, based on the idea of multiplet recombi-

nation, are closely related to the approach put forward in [24], see [52,92–100] for subsequent related

work. In this approach, the leading order anomalous dimensions of various composite operators in the

ε-expansion of O(N) or GN models were fixed using conformal symmetry and the required form of

multiplet recombination (essentially dictated by the classical equations of motion) of the nearly free

fields φ or ψ. In section 3.4.1, we apply a similar approach to fix the scaling dimensions of some scalar

composites in the critical GN model at large N , as well as in the GNY model in d = 4 − ε. We also

show how similar methods can be used in the case of the large N expansion of the scalar O(N) model.

In particular, this appears to lead to a relatively simple derivation of the 1/N anomalous dimension

of the scalar singlet operator (with ∆ = 1 +O(1/N) in GN and ∆ = 2 +O(1/N) in the O(N) model)

compared to the traditional diagrammatic expansion (see e.g. [65, 101,102]).

In section 3.4.2, we move on to study a different type of operators with spin, namely the “double-

trace” operators ∼ σ∂sσ built out of the scalar singlet σ ∼ ψ̄ψ. These operators have twist 2+O(1/N)

at large N , and for general d they are not almost conserved currents.2 We compute their anomalous

dimensions in section 3.4.2 directly from Feynman diagrams in 1/N perturbation theory. The general

d result is given in (3.4.34), and in d = 3 it reads

∆σ∂sσ − s− 2∆σ =
32

π2(2s+ 1)

1

N
+O(1/N2) . (3.1.5)

From the AdS point of view, the anomalous dimension defined by the right-hand side has the inter-

pretation of the interaction energy associated to the two-particle state of two bulk scalar fields with

orbital angular momentum s. Perhaps surprisingly, we find that this quantity is positive, correspond-

ing to an effective repulsive interaction, for all spins in 2 < d < 4.3 In section 3.4.2 we compare this

2They become conserved in the d → 4 limit, where they correspond to one of the two towers of exactly conserved
HS operators in the GNY model (3.1.2) at the d = 4 trivial fixed point g1 = g2 = 0. The two towers non-trivially mix
in d = 4− ε, as explained in section 3.3.4.

3This result is not in violation of Nachtmann’s theorem [103], because in d < 4 the operators ∼ σ∂sσ are not the
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result, as well as the one for the analogous operators (with σ ∼ φ2) in the O(N) model [45], to the

analytic bootstrap analysis [39, 40] (see [41, 62, 104–111] for relevant related work) of the large spin

expansion of the anomalous dimensions of double-trace-like operators of the form O∂sO. The OPE

data needed for the bootstrap analysis is obtained in Appendix 3.5 from that of the free theories using

the AdS/CFT dictionary for double-trace flows [29,31]. We find that the σ∂sσ anomalous dimensions

in the GN and O(N) model can be exactly reproduced in the analytic bootstrap approach, provided

one suitably regulates the sum over the exchange of the infinite tower of nearly conserved currents

of all even spins. Even though the contribution of each nearly conserved even spin current to the

σ∂sσ anomalous dimension is negative, the regularized sum over the HS tower appears to yield a

final positive result in the GN model in agreement with (3.1.5), and a vanishing result for the d = 3

O(N) model, in agreement with [45] (see also [112]). More generally, the arbitrary d results can also

be reproduced in the same way. As a consistency check of the regularized sum over spins, we also

show that it correctly implies vanishing of the anomalous dimensions of the double-trace operators

in the free fermionic and scalar CFT in any d. Finally, in section 3.4.2 we use the same analytic

bootstrap approach to compute the anomalous dimensions of the same type of double-trace operators

in the bosonic and fermionic vector models coupled to Chern-Simons gauge theory in d = 3 [85, 86],

working to leading order in 1/N but exactly in the ‘t Hooft coupling λ. In the CS-fermion model, the

anomalous dimensions vanish to the order 1/N for all λ, and in the CS-scalar model they are given by

an expression that smoothly interpolates between the free scalar at λ = 0 and the critical GN model

at λ→ 1, in agreement with the conjectured 3d bosonization duality [21,113].

3.2 Free Fermions

Let us consider the free CFT of Nf massless Dirac fermions. For general d, the spectrum of bilinear

primary operators is more complicated than that of the free scalar CFT. In addition to a tower of

totally-symmetric conserved tensors Jµ1···µs , as in the free scalar theory, and the scalar operator J0 =

ψ̄ψ of dimension ∆ = d−1, we have towers of conserved tensors of mixed-symmetry Bµ1···µs,ν1···νk and

a finite number of anti-symmetric tensors Bν1···νk that are not conserved currents, see e.g. [114,115].

leading twists in the σσ OPE, due to the presence of the nearly conserved HS currents with twist d− 2 +O(1/N).
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3.2.1 Totally symmetric higher-spin currents

As in the previous chapter, we focus on studying the contracted form of the current:

Ĵs(x, z) = Jµ1...µs(x)zµ1 ... zµs . (3.2.1)

where zµ is again a constant null-vector. One may restore the explicit indices on the currents by acting

with the differential operator (1.4.2) in z-space. The explicit form of the currents can be conveniently

given as

(Ĵs)
i
j = fs(∂̂1, ∂̂2)ψ̄j(x1)γ̂ψi(x2)

∣∣∣
x1,2=x

, s ≥ 1 , (3.2.2)

where ∂̂1,2 ≡ z ·∂1,2, and fs(u, v) is a homogeneous function of total degree s−1. Here i, j = 1, . . . , Nf

are the flavor indices, and we can of course decompose (Js)
i
j into the U(Nf ) singlet part, and the

adjoint (traceless) currents (JAs )ij ∼ ψ̄j ∂̂s−1γ̂ψi − 1
Nf
δijψ̄∂̂

s−1γ̂ψ. In the remaining of this section we

will mostly omit flavor indices for simplicity.

Imposing the conservation condition ∂µD
µ
z Ĵs = 0 and using the free Dirac equation one finds for

fs(u, v):

(d
2

(∂u + ∂v) + u∂2
u + v∂2

v

)
fs = 0 . (3.2.3)

The solution is given by

fs = (∂̂1 + ∂̂2)s−1C
d/2−1/2
s−1

( ∂̂1 − ∂̂2

∂̂1 + ∂̂2

)
, (3.2.4)

which takes the same form as the free scalar CFT (see (2.1.7) and also [33, 84]), up to the shifts

s→ s− 1, d→ d+ 2. Alternatively, we can obtain the same differential equation (3.2.3) by imposing

that (3.2.2) is a conformal primary (see e.g. [37]). Of course, these operators have exact dimension

∆s = d− 2 + s in the free CFT.

3.2.2 Mixed-symmetry currents

The currents constructed above are totally symmetric, corresponding to the representation (s, 0, 0, . . .)

of SO(d). In general dimension d, there also exist conserved tensor primaries of the symmetry
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(s, 1, .., 1, 0, . . .), corresponding to the Young diagram

s

... (3.2.5)

All such mixed-symmetry currents can in principle be extracted from a simple generating formula [115]

B̃ν1...νk(x) = ψ̄(x+ y)γν1...νkψ(x− y)
∣∣∣
y=0

, (3.2.6)

where γν1...νk ≡ γ[ν1
...γνk] is the totally anti-symmetrized product of γ-matrices. One can easily show

that it generates conserved currents except for the case of the totally anti-symmetric primaries (1, ..., 1)

ψ̄γν1...νkψ , k > 1 , (3.2.7)

which are not conserved and should be AdS/CFT dual to anti-symmetric massive fields. However,

the simple generating function (3.2.6), when expanded in y, does not give conformal primaries, but a

mixture with descendants (the expansion of (3.2.6) does not produce irreducible tensors). To obtain

the primary operators, let us look for the generating function

Bν1...νk =
∑
s

1

s!
Bµ1...µs,ν1...νkz

µ1 · · · zµs (3.2.8)

where, as for the totally symmetric tensors, we use a null polarization vector to contract all the

symmetric indices. The mixed-symmetry primaries have to obey a number of irreducibility conditions:

B(µ1...µs,µs+1)ν1...νk = 0 , δρσBµ1...µs−2ρσ,ν1...νk = 0 , (3.2.9)

∂λBµ1...µs−2λ[ν0,ν1...νk] = 0 . (3.2.10)

Here symmetrization over all µ indices and anti-symmetrization over all ν indices is implied, which

is indicated by the brackets. The first condition imposes (s, 1, . . . , 1, 0, . . .) symmetry; the second one

tells that the tensor is traceless in all the indices provided the first condition is satisfied; the third

one implies that the divergence projected onto the (s− 1, 1 . . . , 1, 0, . . .) symmetry vanishes (there are

two independent divergences: (s, 1, . . . , 1, 0, . . .) and (s − 1, 1, . . . , 1, 0, . . .) and only the latter is the
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primary that needs to be decoupled). The most general ansatz for the generating function reads:4

Bν1...νk(∂̂i; z) = F1ψ̄(x1)γν1...νkρz
ρψ(x2) + F2ψ̄(x1)γ[ν1...νk−1

zνk]ψ(x2)+

+ F3∂[ν1
ψ̄(x1)γν2...νk−1ρz

ρzνk]ψ(x2) + F4ψ̄(x1)γ[ν1...νk−2ρz
ρzνk−1

∂νk]ψ(x2) ,

(3.2.11)

where again anti-symmetrization over ν indices is implied. Functions F1,2,3,4 depend on ∂̂1,2. The

usage of the null polarization vector zµ takes away the traces in the µ indices. However, the trace

with respect to one symmetric and one antisymmetric index δµν needs to be subtracted by hand.

Altogether, the Young, the conservation and the tracelessness conditions, when expressed in terms of

the generating function, give:

zρBρν1...νk−1
= 0 , ∂µD

µ
zD

z
[ν1
Bν2...νk+1] = 0 , Dµ

zBµν1...νk−1
= 0 , (3.2.12)

where in the second expression the anti-symmetrization over all ν’s is implied. The trace with respect

to z and a free index µ has to be taken with the help of the Thomas derivative (1.4.2).

In the following we would like to compute the anomalous dimensions of the totally-symmetric

higher-spin currents. The non-conservation operator of those, as will be shown below, contains no

more than two gamma-matrices. Therefore it will only involve the simplest mixed-symmetry primaries

with symmetry of the hook diagram

s . (3.2.13)

A simplification occurs in this case and only two terms of (3.2.11) survive

Bµ = F1ψ̄(x1)γµνz
νψ(x2) + F2ψ̄(x1)zµψ(x2) . (3.2.14)

The Young condition is trivial here and the conservation/tracelessness can be read from

∂µD
µ
zDz[ν1

Bν2] = 0 , Dµ
zBµ = 0 . (3.2.15)

4In principle, one can introduce auxiliary anti-commuting variables as to hide the ν indices and work out the super-
symmetric Thomas derivative. Fortunately we will need only the simplest mixed-symmetry currents.
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Solving these equations, we find that the result for the (s, 1) mixed-symmetry currents is

Bµ(x, z) = F1ψ̄(x1)γµνz
νψ(x2) + F2ψ̄(x1)zµψ(x2)

∣∣∣
x1,2=x

, (3.2.16)

F1 = (∂̂1 + ∂̂2)s−1C
d/2−1/2
s−1 (w) , F2 = (∂̂1 + ∂̂2)s−1C

d/2−1/2
s−2 (w) , (3.2.17)

where w = (∂̂1 − ∂̂2)/(∂̂1 + ∂̂2), and it is understood that x1,2 → x after taking all derivatives. Let us

give few examples. The s = 1 case is trivial — it is not a current:

Bµ = ψ̄γµνψz
ν . (3.2.18)

The simplest genuine mixed-symmetry current is (2, 1) (see also [115] for the index form):

Bµ = (d− 1)(∂̂1 − ∂̂2)ψ̄γµνz
νψ + (∂̂1 + ∂̂2)zµψ̄ψ . (3.2.19)

Note that while the divergence of the mixed-symmetry current ∂µBµµ2,...µs−1[ν0,ν1] that has (s−1, 1)

symmetry does vanish, but the divergence with respect to the ν index is not zero. It defines a

descendant

∂νBν = Fd(∂̂1, ∂̂2)ψ̄ψ , (3.2.20)

Fd(u, v) = (v − u)(u+ v)s−1C
d/2−1/2
s−1

(
u− v
u+ v

)
+ (u+ v)sC

d/2−1/2
s−2

(
u− v
u+ v

)
, (3.2.21)

which will be shown below to naturally enter the non-conservation operator of totally symmetric

currents in the interacting CFT.

3.2.3 Two-point functions

The two-point functions of the totally-symmetric currents can be computed as in [33,84] by using the

Schwinger representation for the two-point function 〈ψψ̄〉, which in our conventions reads

〈ψi(x1)ψ̄j(x2)〉 = δij
Cψψ/x12

(x2
12)∆ψ+

1
2

, Cψψ =
Γ(d2 )

2πd/2
, (3.2.22)
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so that we can write

〈ψ(x)ψ̄(0)〉 = −Γ (d/2− 1)

4πd/2
/∂

1

(x2)d/2−1
= −/∂

∫ ∞
0

dα

4πd/2
αd/2−2e−αx

2

. (3.2.23)

Using this, one finds after integration over the Schwinger parameters

〈Js(x, z)Js(0, z)〉 = Css ×
(z · x)2s

(x2)d+2s−2
, (3.2.24)

Css = N
π2−2d+2s+1Γ(d+ s− 2)Γ(d+ 2s− 3)

πdΓ
(
d−1

2

)2
Γ(s)

, (3.2.25)

where N = Nf tr1 is the total number of fermion components. The non-singlet currents have tr1

instead of N .

Also, we will need the two-point functions of the hook currents and their descendants (3.2.20),

which are given by a two-by-two matrix:

〈BsνηνBsµηµ〉 〈∂νBsνBsµηµ〉
〈Bsνην∂µBsµ〉 〈∂νBsν∂µBsµ〉

 = NCs ×
(z · x)2s−2

(x2)d+2s−2
× (3.2.26)

×

η2(z · x)2 − 2(z · x)(η · x)(z · η) + (d+2s−4)
2(d+s−3)x

2(z · η)2 (z · x)(z · η) s(d−2)
d+s−3

(z · x)(z · η)−s(d−2)
d+s−3

2(d−2)s(d+2s−2)
d+s−3

(z·x)2

x2

 ,

where we introduced an additional vector ηµ to hide the index ν away. The overall factor is the Cs,

(3.2.25), from the two-point function of the symmetric currents.

3.2.4 Some OPE coefficients

It is in principle straightforward to work out 3-point (or higher) correlation functions by similar

methods. As an example, the 3-point function of the totally symmetric currents and two fermions is

found to be (omitting flavor indices for simplicity, and denoting by α, β the spinor indices)

〈Js(x1, z)ψ
α(x2)ψ̄β(x3)〉 = C2

ψψCsψψ
(
/x12z · γ /x13

)α
β

(
z·x12

x2
12
− z·x13

x2
13

)s−1

xd12x
d
13

,

Csψψ =
(−1)s2s−1Γ

(
d
2 + s− 1

)
Γ(d+ s− 2)

Γ(d− 1)Γ
(
d
2

)
Γ(s)

,

(3.2.27)
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and similarly one may derive the 3-point functions with mixed-symmetry operators. In the following,

we will also need the 3-point function of Js with two ∆ = d− 1 scalar bilinears. A short calculation

using the Schwinger representation and the generating function for Js yields

〈Js(x1, z)ψ̄ψ(x2)ψ̄ψ(x3)〉 = Cs00

(
z1·x13

x2
13
− z1·x12

x2
12

)s
xd−2

12 xd−2
13 xd23

,

Cs00 = 2s−1NC3
ψψ(1 + (−1)s)

Γ
(
s+ d

2 − 1
)

Γ
(
d
2

) Γ (d+ s− 2)

Γ (d− 1) Γ (s)
.

(3.2.28)

It is instructive to compare this result with the conformal block expansion of the 4-point function of

the ψ̄ψ operator. An explicit calculation yields

〈ψ̄ψ(x1)ψ̄ψ(x2)ψ̄ψ(x3)ψ̄ψ(x4)〉 = N2C4
ψψ

g(u, v)

(x2
12x

2
34)d−1

, u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

,

g(u, v) = 1 + ud−1 +
(u
v

)d−1

+
1

N

(u
v

)d/2(
u
d
2 − u d2−1(1 + v) +

(1− v)(1− v d2 )

u
− (1 + v

d
2 )

)
(3.2.29)

The function g(u, v) has the conformal block expansion g(u, v) = 1+
∑
τ,` aτ,`gτ,`(u, v), with τ = ∆−`

the twist of the intermediate state, and aτ,` are related to squares of the OPE coefficients. In the

limit u→ 0, gτ,`(u, v) reduces to the so-called collinear conformal blocks

gτ,`(u, v) ' uτ/2(− 1
2 )`(1− v)`2F1(

τ

2
+ `,

τ

2
+ `, τ + 2`; 1− v) . (3.2.30)

The term of order u(d−2)/2 in the small u expansion of (3.2.29) should be reproduced by the sum over

the exchanged conserved currents Js of all even spins, with τ = d− 2. Using the OPE coefficients in

Cs00, and as = C2
s00/(CssN

2C4
ψψ) (see the Appendix), we have verified that indeed

∑
`

a`(− 1
2 )`(1− v)`2F1(

d− 2

2
+ `,

d− 2

2
+ `, d− 2 + 2`; 1− v) =

1

N

1

vd/2
(1− v)(1− vd/2) . (3.2.31)
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3.3 Weakly broken currents in fermionic CFT

3.3.1 Generalities

Applying the general formula (1.4.11)derived in the introduction one may derive the following formula

for the anomalous dimension, valid to leading order in the breaking parameter

γs = − 1

s(s+ d/2− 2)(s+ d/2− 1)(s+ d− 3)

(z · x)2〈K̂s−1(x, z)K̂s−1(0, z)〉0
〈Ĵs(x, z)Ĵs(0, z)〉0

, (3.3.1)

where the subscript ‘0’ means that the correlators are computed in the “unbroken” theory. Although

for simplicity we have omitted flavor indices, this formula applies in the same way for singlet and

non-singlet currents. In the following we will denote by γs the anomalous dimension of the singlet

currents, and γAs the one of the non-singlets (adjoint).

To derive the explicit formula for the non-conservation in the various models we consider below, we

act with an operator ∂µD
µ
z on the currents (3.2.2), which gives terms proportional to the “descendant

operators” ∂µψ̄γµ, /∂ψ and ∂2ψ̄, ∂2ψ, which are non-zero in the interacting fermion theory:

∂µD
µ
z fs(∂̂1, ∂̂2)ψ̄(x1)γ̂ψ(x2) = (3.3.2)

=
[
/∂1qs(∂̂1, ∂̂2) + /∂2q̃s(∂̂1, ∂̂2) + γ̂∂2

1hs(∂̂1, ∂̂2) + γ̂∂2
2 h̃s(∂̂1, ∂̂2)

]
ψ̄(x1)ψ(x2) ,

qs(u, v) =
(
(d2 − 1)fs + v(∂vfs − ∂ufs)

)
, q̃s(u, v) =

(
(d2 − 1)fs + u(∂ufs − ∂vfs)

)
,

hs(u, v) =
(
d
2∂ufs +

u− v
2

∂2
ufs + v∂uvfs

)
, (3.3.3)

h̃s(u, v) =
(
td2∂vfs +

v − u
2

∂2
vfs + u∂uvfs

)
Explicitly carrying out the differentiation and using recurrence relations for Gegenbauer polynomials

we may represent the functions introduced above as:

qs(u, v) ≡ qds (u, v) = (u+ v)s−1
[
(d2 − 1)C

d/2−1/2
s−1

(u− v
u+ v

)
− 2(d− 1)v

u+ v
C
d/2+1/2
s−2

(u− v
u+ v

)]
,

q̃s(u, v) = (−1)s−1qds (v, u),

hs(u, v) = (d− 1)qd+2
s−1(u, v) , (3.3.4)

h̃s(u, v) = (d− 1)(−1)s−1qd+2
s−1(v, u) .
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3.3.2 Large N expansion

One begins with the action of the Gross-Neveu model

S =

∫
ddx

(
ψ̄/∂ψ +

1

2
(ψ̄ψ)2

)
(3.3.5)

and introduces the Hubbard-Stratanovich field σ as

S =

∫
ddx

(
ψ̄/∂ψ +

σ√
N

(ψ̄ψ)− 1

2
σ2

)
. (3.3.6)

The auxiliary field acquires an induced (non-local) kinetic term via fermion loops

Sσ = −1

2

∫
ddxddyσ(x)σ(y)〈 1√

N
ψ̄ψ(x)

1√
N
ψ̄ψ(y)〉0 +O(1/N) , (3.3.7)

where we have dropped the quadratic term in (3.3.6) as it does not contribute in the UV limit.

Inverting the induced quadratic term, one finds the σ 2-point function to leading order in 1/N to be

〈σ(x1)σ(x2)〉 =
Cσσ
x2

12

, Cσσ = −
2(d− 2)Γ(d− 1) sin

(
πd
2

)
πΓ
(
d
2

)2 , (3.3.8)

so that σ ∼ ψ̄ψ is a scalar primary with ∆ = 1 +O(1/N) at the UV fixed point.

The anomalous dimensions of ψ and σ to leading order in the 1/N expansion are well-known

[101,102,116,117]:5

∆ψ =
d− 1

2
− 1

N

(d− 2)Γ(d− 1) sin
(
πd
2

)
πdΓ

(
d
2

)2 , (3.3.9)

∆σ = 1 +
1

N

4Γ(d) sin
(
πd
2

)
πdΓ

(
d
2

)2 . (3.3.10)

Since ψ is a nearly free field at large N , the leading anomalous dimension of ψ can be readily obtained

using the equations of motion

/∂ψ = − 1√
N
ψσ , ∂µψ̄γµ = +

1√
N
ψ̄σ, (3.3.11)

in the spirit of [24], but with 1/N playing the role of the small parameter (a similar calculation in the

5∆ψ is known up to 1/N3 [101,117] and ∆σ up to 1/N2 [101,116].
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large N scalar CFT was carried out in [33, 84]). In the interacting theory, the fermion ψ must have

the two-point function

〈ψiψ̄j〉 = δij
Cψψ /x12

(x2
12)∆ψ+

1
2

(3.3.12)

with ∆ψ = (d − 1)/2 + γψ. Applying the Dirac operators /∂1 and /∂2 on this two-point function, one

gets

/∂1/∂2〈ψiψ̄j〉 = −2γψ(d+ 2γψ)δij
Cψψ /x12

(x2
12)∆ψ+

3
2

, (3.3.13)

which can be compared with the insertion of (3.3.11)

− 1

N
〈ψiσψ̄jσ〉 = − 1

N
Cσσδ

i
j

Cψψ /x12

(x2
12)∆ψ+

3
2

. (3.3.14)

This yields to the leading order in 1/N :

γψ =
Cσσ
2dN

, (3.3.15)

which, using (3.3.8), can be seen to be in full agreement with (3.3.9). Interestingly, the anomalous

dimension of σ can also be reconstructed by using the equation of motion method, by considering the

3-point function 〈ψψ̄σ〉. We will carry out this calculation in section 3.4.1 below, and proceed here

with the analysis of the weakly broken higher-spin operators.

To find the non-conservation operator for the higher-spin currents, we need to plug the equations

of motion (3.3.11) into the master formula for the non-conservation operator (3.3.2). As a result we

find two type of terms: with two gamma-matrices and without gamma-matrices:

K̂s−1 =
1√
N

(
k1(∂i)ψ̄(x1)ψ(x2)σ(x3) + k2(∂i)ψ̄(x1)γµνψ(x2)∂µ3 z

νσ(x3)
)

(3.3.16)
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where

k1 ≡
[
qds (∂̂1 + ∂̂3, ∂̂2) + (−1)sqds (∂̂2 + ∂̂3, ∂̂1)

]
+

+ (d− 1)∂̂3

[
qd+2
s−1(∂̂1 + ∂̂3, ∂̂2) + (−1)sqd+2

s−1(∂̂2 + ∂̂3, ∂̂1)
]
,

k2 ≡ (d− 1)
[
qd+2
s−1(∂̂1 + ∂̂3, ∂̂2)− (−1)sqd+2

s−1(∂̂2 + ∂̂3, ∂̂1)
]
.

(3.3.17)

The non-conservation operator K̂s−1 must be a conformal primary of the unbroken theory6 In partic-

ular it should be possible to decompose it as

K̂s−1 =
∑
a,c

Bsa,c∂̂a(Bs1µ ∂
µ
3 )∂̂cσ +

∑
a,c

Csa,c∂̂a(∂µBs1µ )∂̂cσ +
∑
a,c

Asa,c∂̂a(ψ̄ψ)∂̂cσδa+c,s−1 , (3.3.18)

where the summation range and the spin s1 of the operators Bs1µ in the sums are fixed by the spin

and conformal dimension counting: s1 + a+ c+ 1 = s in the first two sums and a+ c+ 1 = s in the

last one.

First of all, we observe that we need the hook currents, i.e. the ones with (s, 1) symmetry, as these

contain two gamma matrices while the usual totally-symmetric currents do not contribute at all. It

is also important to take the descendant ∂µBµ into account since it does not vanish. The last terms

involving the ψ̄ψ-singlet appears only in the case of singlet currents of even spins. Note that at the

large N UV fixed point, this term should be projected out due to the σ equation of motion, which is

formally ψ̄ψ = 0 (σ replaces ψ̄ψ at the UV fixed point).

Taking notice that the γ-part of the non-conservation operator is exactly like in the large-N bosonic

model [33,84], we immediately find

Bsa,c = −2(a+ c+ 1)!(a+ c− ν − s+ 1)(a+ 2c+ 1− 2(s+ ν))!

a!c!(c+ 1)!(a+ c− 2(s+ ν))!
, (3.3.19)

which is assumed to vanish for a+ c even. The formula works both for even and odd spins. Note that

everything depends on s+ ν only (ν = (d− 3)/2). Analogously,

Csa,c =
2(a+ c+ 1)!(−a− c+ ν + s− 1)(a+ c− 2(ν + s) + 1)(a+ 2c− 2(ν + s))!

a!(c!)2(a+ c− s+ 1)(a+ c− 2(ν + s))!
,

6This can be seen by acting with the special conformal generators on the non-conservation equation, see for instance
[86,118].
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which is assumed to vanish for a+ c even or a+ c > s−2. The only new part is due to the (ψ̄ψ)-terms

Asa,c =

(
ν + s

2

)2
(2ν + s− 1)!

(a+ 2ν + 1)!

4(−1)as ((1− s)a) 2

Γ(a+ 1)Γ(s)
, (3.3.20)

which is assumed to vanish for s odd or unless a+ c = s− 1. The fact that the decomposition (3.3.18)

is possible is a check of the non-conservation operator (3.3.16).

Examples. Let us consider a few explicit low spin examples. The first nontrivial example is the

spin-two singlet current, for which we find (omitting an overall factor)

Ks=2 ∼ (∂̂1 + ∂̂2 + (1− d)∂̂3)ψ̄ψσ = (∂(ψ̄ψ)σ + (1− d)(ψ̄ψ)∂σ) , (3.3.21)

which is conserved upon projecting out ψ̄ψ, the operator that is replaced by σ in the large-N treatment.

The spin-three non-conservation contains an anti-symmetric tensor:

Ks=3 = 2(∂̂1 − ∂̂2)(−∂̂1 − ∂̂2 + (d+ 1)∂3)ψ̄ψσ + (2(∂̂1 + ∂̂2))− d∂3)ψ̄γabψz
a∂bσ

= [dBa,u∂
u∂aσ − 2∂aBa,u∂

uσ − 2(d+ 1)∂uBa,u∂aσ + 2∂a∂
uBa,uσ] zaza .

The spin-four non-conservation contains a genuine mixed-symmetry current:

Ks=4 = [5Baa,u∂
u∂aσ − 2∂aBaa,u∂

uσ − 6∂uBaa,u∂aσ + ∂a∂
uBaa,uσ] zazaza

+

[
8

3
(ψ̄ψ)∂a∂a∂aσ − 12∂a(ψ̄ψ)∂a∂aσ + 8∂a∂a(ψ̄ψ)∂aσ −

2

3
∂a∂a∂a(ψ̄ψ)σ

]
zazaza

where the formula is written in d = 3 to simplify the coefficients and the last line displays the

contribution of the ψ̄ψ operator that needs to be dropped for the singlet currents. As a result one

sees the formula from [21,35].

In principle, one can use the decomposition (3.3.18) to directly compute the two-point function in

(1.4.11) and thus the anomalous dimensions. However, the sums which appear are quite involved to

calculate, and in practice we find more convenient to compute 〈Ks−1Ks−1〉 directly in terms of the

form (3.3.16). To do this, one can start with the Schwinger representation (3.2.23). Note that, using

this representation, we can trade derivatives at point 0 in (1.4.11) to x-derivatives by flipping their

signs. The action of the projected derivatives on the integral is trivial: ∂̂ne−αx
2

= (−2αx̂)ne−αx
2

since
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∂̂x̂ = 0. Owing to this, the differential operators in the descendant are replaced with a polynomial

in α parameters. The derivatives which are not contracted with the null polarization vector require a

bit more work, but after some manipulations it is not difficult to see that the calculation eventually

reduces to evaluating some integrals over α parameters, which can be performed using the properties

of Gegenbauer polynomials. Following this procedure to compute 〈Ks−1Ks−1〉, and using the master

formula (1.4.11), we arrive at the following result

γAs = 2γψ

(
1− (d− 2)d

4(s+ d
2 − 2)(s+ d

2 − 1)

)
, (3.3.22)

which is valid for the non-singlet currents of all spins (and for odd spin singlets, which coincide with

odd spin non-singlets). To the best of our knowledge, this result was first obtained in [87] (using a

standard Feynman diagram approach).

For singlet currents of even spins, the above result is not correct, because one has to subtract

by hand the piece of the descendant (3.3.18) involving the scalar singlet ψ̄ψ, as explained above.

Subtracting from (3.3.22) the contribution of the last term in (3.3.18)

∑
a,b

Aa,s−1−nAb,s−1−b(∂̂)a+b(−1)b〈ψ̄ψψ̄ψ〉(∂̂)2(s−1)−a−b(−1)s−1−b〈σσ〉 (3.3.23)

we obtain the final result for even spin singlets:

γs = 2γψ

(
1− (d− 2)d

4(s+ d
2 − 2)(s+ d

2 − 1)
− Γ(d+ 1)Γ(s+ 1)

2(d− 1)(s+ d
2 − 2)(s+ d

2 − 1)Γ(d+ s− 3)

)
, (3.3.24)

where the last term is due to the subtraction of (3.3.23). This result is again in agreement with [87].

Interestingly, the structure of this result, as well as (3.3.22), is identical to the ones in the critical

large N scalar model [33, 45, 84, 119], up to overall factor of γψ replacing γφ. In particular, note that

the large spin expansion of (3.3.24) reads

γs = 2γψ

(
1− (d− 2)d

4

1

s2
− Γ (d+ 1)

2(d− 1)

1

sd−2
+ . . .

)
. (3.3.25)

The leading spin independent term agrees, of course, with the general expectation that ∆s ∼ 2∆ψ + s

at large spin. Naively, following the arguments in [39,40,48], one might have expected a term of order

1/s corresponding to the exchange of the scalar operator σ with ∆ = 1 + O(1/N), however we see
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that such term is absent. Expanding at large spin the recent 1/N2 result in [88], we find that the

anomalous dimensions include terms of order 1/sd−2, 1/s2, log(s)/sd−2 and log(s)/s2, but no terms

of order 1/s. It would be interesting to understand this by generalizing the analysis of [39–41], or the

approach of [109,110], to the case of 4-point functions of fermionic operators.

3.3.3 Gross-Neveu in d = 2 + ε

The Gross-Neveu model in dimension d is defined by the action:

S =

∫
ddx

(
ψ̄/∂ψ +

1

2
g(ψ̄ψ)2

)
(3.3.26)

where ψ̄ψ ≡ ψ̄iψi and the action enjoys U(Nf )-symmetry. The one-loop results for the β-function

and the anomalous dimensions of the lowest lying operators ψ and ψ̄ψ are well known (see e.g. [57]

for a review):

β = εg − (N − 2)
g2

2π
+ ... , g∗ =

2π

N − 2
ε , (3.3.27)

γψ =
N − 1

16π2
g2 =

N − 1

4(N − 2)2
ε2 , ∆ψ =

d− 1

2
+ γψ , (3.3.28)

γψ2 = − 1

2π
g = − ε

N − 2
, ∆φ = d− 1 + γψ2 . (3.3.29)

Note that N here is Nf tr1 the total number of the field components. The equations of motion take

the following form

/∂ψ = −gψ(ψ̄ψ) , ∂µψ̄γµ = +gψ̄(ψ̄ψ) . (3.3.30)

Following similar methods as in [24], it is possible to use these equations to derive the above anomalous

dimensions, as well as the dimension of higher order composite scalar operators [94,95]. Here, we use

a similar approach to fix the leading order anomalous dimensions of the weakly broken higher-spin

currents.

The calculation of the divergence of the currents follows similar steps as in the previous sections.

We find

K̂s−1 = g
(
k1(∂i)ψ̄(x1)ψ(x2)ψ̄(x3)ψ(x4) + k2(∂i)ψ̄(x1)γµνψ(x2)(∂µ3 + ∂µ4 )zνψ̄(x3)ψ(x4)

)
(3.3.31)
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where

k1 ≡
[
q2
s(∂̂1 + ∂̂3 + ∂̂4, ∂̂2) + (−1)sq2

s(∂̂2 + ∂̂3 + ∂̂4, ∂̂1)
]

+ ∂̂3

[
q4
s−1(∂̂1 + ∂̂3 + ∂̂4, ∂̂2) + (−1)sq4

s−1(∂̂2 + ∂̂3 + ∂̂4, ∂̂1)
]
,

k2 ≡
[
q4
s−1(∂̂1 + ∂̂3 + ∂̂4, ∂̂2)− (−1)sq4

s−1(∂̂2 + ∂̂3 + ∂̂4, ∂̂1)
]
.

(3.3.32)

To find the anomalous dimension according to the formula (1.4.11), we have to calculate a two-point

function of four fermionic operators at points x and 0. There are three different ways to contract the

spinor and U(Nf ) indices, pair by pair or “threading” through all 8 operators. The first diagram,

obtained by contracting the first pair at point x with the corresponding one at point 0, gives a

contribution

Nε2

2(N − 2)2
. (3.3.33)

The second diagram is obtained by contracting the first pair at point x with the second pair at point

0. It is non-zero only for even singlets and gives a contribution to γs

−1 + (−1)s

2

Nε2

2(N − 2)2
. (3.3.34)

Finally, the third diagram is the one where spinor and U(Nf ) indices make a single loop threading all

8 fermions, and yields a contribution

−1− (−1)s

2

ε2

(N − 2)2
. (3.3.35)

Summing these results up we get for the non-singlets:

γAs =
Nε2

2(N − 2)2
, s even ,

γAs =
(N − 2)ε2

2(N − 2)2
=

ε2

2(N − 2)
, s > 1 odd ,

(3.3.36)

and γAs=1 = 0 in accordance with the exact U(Nf ) symmetry. For the even spin singlets, we obtain7

γs = O(ε3) , s ≥ 2 even . (3.3.37)

Note that, to this order, all these results are independent of the spin (except for the vanishing of

γAs=1). One can check that they match precisely the expansion of the 1/N values (3.3.22) and (3.3.24)

7The result for odd spin singlets is the same as for odd spin non-singlets.
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near d = 2 + ε. Including also the recent 1/N2 results in [88], we find that the 2 + ε expansion of the

available large N results is

γAs>1 = ε2
(

1

2N
+

3 + (−1)s

2N2

)
+ ε3

(
1

s−s2 − 1

4N
+

1 + 2
s−s2 − 2(−1)s(ψ(s) + γ)

4N2

)
+O(ε4),

γs = ε3
(

4

s
− 4

s− 1
− 2 + 4(ψ(s) + γ)

)(
1

8N
+

3

8N2
+ . . .

)
+O(ε4) , s even ,

where ψ(s) is the digamma function and γ the Euler-Mascheroni constant. Note that to leading order

in ε these precisely agree with the results derived above. Note also that a non-trivial spin dependence,

including terms of order ∼ log(s) at large s, appears at the next-to-leading order in the ε-expansion.

3.3.4 Gross-Neveu-Yukawa in d = 4− ε

The Gross-Neveu-Yukawa (GNY) action is defined as:

S =

∫
ddx

(
ψ̄i(/∂ + g1σ)ψi +

1

2
(∂µσ)2 +

g2

24
σ4

)
(3.3.38)

This model has a perturbative IR fixed point in d = 4 − ε which is in the same universality class as

the UV fixed point of the GN model, and thus provides a different description of the same interacting

fermionic CFT [57,79,80]. The one-loop beta functions yield the fixed point couplings

(g∗1)2 =
16π2ε

N + 6
, g∗2 = 16π2Rε ,

R =
24N

(N + 6)[(N − 6) +
√
N2 + 132N + 36]

,

(3.3.39)

and the leading anomalous dimensions of ψ and σ are

γψ =
(g∗1)2

32π2
=

ε

2(N + 6)
, (3.3.40)

γσ =
N(g∗1)2

32π2
=

Nε

2(N + 6)
. (3.3.41)

The equations of motion are

/∂ψi = −g1σψ
i ,

∂2σ = g1ψ̄iψ
i +

g2

6
σ3 .

(3.3.42)
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From the abstract CFT point of view, these equations describe the multiplet recombination which

makes ψ and σ into long representations of the conformal algebra with ∆ψ > (d − 1)/2 and ∆σ >

d/2−1, and can be used to fix the leading order anomalous dimensions. Since the ψ equation of motion

formally coincides with the large-N equation (3.3.11), one arrives at the same relation (3.3.15), with

d = 4:

γψ =
1

8
Cσσ(g∗1)2 =

(g∗1)2

32π2
, (3.3.43)

where we have used Cσσ = 1
4π2 , since σ is now a canonically normalized (near) free field. As for the

σ anomalous dimension, one can see that to leading order in the breaking parameter we can neglect

the σ3 term in (3.3.42), and by a calculation similar to the one in the scalar φ4 theory [24,33,84], one

finds (setting d = 4 which is appropriate to leading order):

γσ =
1

32Cσσ
(g∗1)2x6

12〈ψ̄ψ(x1)ψ̄ψ(x2)〉0 , (3.3.44)

which yields

γσ =
NC2

ψψ(g∗1)2

32Cσσ
=
N(g∗1)2

32π2
, (3.3.45)

in agreement with (3.3.40). The relation between g∗1 and ε can also be reconstructed without input

from Feynman diagrams and beta functions by applying the equations of motion (3.3.42) to the 3-point

function 〈ψψ̄σ〉, as will be explained in section 3.4.1 below.

Let us now turn to the weakly broken higher-spin currents of the model (focusing on the totally

symmetric operators only). By applying the general non conservation formula (3.3.2), the divergence

of the fermion bilinear currents (flavor indices omitted)

Ĵs,ψ = (∂̂1 + ∂̂2)s−1C3/2
s

( ∂̂1 − ∂̂2

∂̂1 + ∂̂2

)
ψ̄(x1)γ̂ψ(x2)

∣∣∣
x1,x2→x

(3.3.46)

is found to be

K̂s−1,ψ = g1

(
k1(∂i)ψ̄(x1)ψ(x2)σ(x3) + k2(∂i)ψ̄(x1)γµνψ(x2)∂µ3 z

νσ(x3)
)

(3.3.47)
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and is almost identical to the large-N limit, with k1 and k2 given now for d = 4 by

k1 ≡
[
q4
s(∂̂1 + ∂̂3, ∂̂2) + (−1)sq4

s(∂̂2 + ∂̂3, ∂̂1)
]
+

+ 3∂̂3

[
q6
s−1(∂̂1 + ∂̂3, ∂̂2) + (−1)sq6

s−1(∂̂2 + ∂̂3, ∂̂1)
]
,

k2 ≡ 3
[
q6
s−1(∂̂1 + ∂̂3, ∂̂2)− (−1)sq6

s−1(∂̂2 + ∂̂3, ∂̂1)
]
.

(3.3.48)

For the non-singlets and odd spin singlets, the fermionic bilinear currents do not mix with other

operators, so the calculation of the anomalous dimensions proceeds exactly as in the 1/N expansion,

with Cσσ in the latter replaced now by 1
4π2 (g∗1)2, and we find

γAs =
(g∗1)2

16π2

(s− 1)(s+ 2)

s(s+ 1)
= 2γψ

(
1− 2

s(s+ 1)

)
. (3.3.49)

Note that this vanishes for s = 1, as it should. Expanding this result at large N to the order 1/N2,

we find agreement with both (3.3.22) and the result of [88]

γAs = ε

(
1

N
− 6

N2
+ . . .

)(
1− 2

s(s+ 1)

)
+O(ε2) . (3.3.50)

In the case of even spin singlets, a novelty compared to the large N calculation is the appearance

of mixing with the scalar bilinear higher-spin currents

Ĵs,σ = (∂̂1 + ∂̂2)sC1/2
s

( ∂̂1 − ∂̂2

∂̂1 + ∂̂2

)
σ(x1)σ(x2)

∣∣∣
x1,x2→x

, s = 2, 4, 6, . . . (3.3.51)

The divergence of these currents, which we denote K̂s−1,σ, has two pieces according to equations of

motion. However, to lowest order in ε we may ignore the piece coming with g2 since g∗1 ∼
√
ε whereas

g∗2 ∼ ε. To the lowest order, the descendant is then:

K̂s−1,σ = 2g1q
4
s(∂̂1 + ∂̂2, ∂̂3)ψ̄i(x1)ψi(x2)σ(x3) . (3.3.52)

It is evident that this term induces the mixing between the Ĵs,ψ and Ĵs,σ since there are non-zero off-

diagonal 2-point functions 〈K̂s−1,σK̂s−1,ψ〉.8 The calculation can be carried out using the Schwinger

8A similar mixing of two towers of nearly conserved higher-spin currents takes place in the cubic O(N) scalar field
theory in d = 6− ε [33].

63



representation of the propagator, and using (1.4.11) we find the mixing matrix

(g∗1)2

16π2

 (s−1)(s+2)
s(s+1)

−2
√
N√

s(s+1)

−2
√
N√

s(s+1)
N

 . (3.3.53)

This leads to the anomalous dimensions:

γ±s =
g2

1

16π2

−2 + (N + 1)s(1 + s)±
√

4 + s(1 + s)(−4 + 20N + (N − 1)2s+ (N − 1)2s2)

2s(1 + s)
(3.3.54)

The eigenvalue γ−s corresponds to the tower of weakly broken currents with twist near d− 2 which is

present in the large N treatment of the CFT. Indeed, one may check that γ−s=2 = 0, indicating that

the corresponding eigenstate is the conserved stress tensor of the CFT. The large N expansion of the

anomalous dimensions reads

γ−s =
ε

N

(s− 2)(s+ 3)

s(s+ 1)
− 2ε

N2

(s− 2)(s+ 3)(3s2 + 3s+ 2)

s2(s+ 1)2
+ . . . , (3.3.55)

which again agrees with the expansion around d = 4 − ε of the 1/N value (3.3.24) and 1/N2 results

from [88].

The second eigenvalue γ+
s should instead correspond in the large N approach to the “double-trace”

operators σ∂sσ ∼ (ψ̄ψ)∂s(ψ̄ψ). This is suggested by expanding (3.3.54) at large N , which yields

∆+ = d− 2 + s+ γ+
s = 2 + s− 2

ε

N

3s2 + 3s− 2

s(1 + s)
+O(1/N2) , (3.3.56)

corresponding to an operator with twist 2 + O(1/N). In section 3.4.2, we will compute the scaling

dimensions of the σ∂sσ operators in the large N theory as a function of d, and explicitly verify

agreement with (3.3.56). This provides a non-trivial test of the identification of the IR fixed point of

the GNY model with the UV fixed point of the GN model.

Let us also give the large spin expansion of the anomalous dimensions (3.3.54). Writing the result

in terms of γψ and γσ, we find

γ−s = 2γψ

(
1− 6N − 2

(N − 1)s2
+

6N − 2

(N − 1)s3
+ . . .

)
,

γ+
s = 2γσ

(
1 +

4

(N − 1)s2
− 4

(N − 1)s3
+ . . .

)
.

(3.3.57)
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Note the absence of 1/s terms, as observed above in the large N results.

The case N = 1 is special and deserves a separate comment. Since N = Nf tr1, this corresponds to

a formal analytic continuation which should yield a CFT with a single 2-component Majorana fermion

in d = 3. It has been argued that the IR fixed point in this case displays emergent supersymmetry

[83,120–124]. Indeed, we can see that for N = 1 the dimension of σ and ψ in (3.3.40) coincide. Further

checks, including higher orders in the ε-expansion, can be found in [83]. Note that for N = 1 the

square roots in (3.3.54) simplify, and we get the results

γ−s = 2γψ

(
1− 2

s

)
, γ+

s = 2γψ

(
1 +

2

s+ 1

)
. (3.3.58)

It would be interesting to study the half-integer higher-spin operators ∼ σ∂s−1/2ψ, and check how

the operators organize into supersymmetric multiplets.

3.4 Composite operators in fermionic and scalar CFTs

In this section we will calculate the dimensions of various composite operators in fermionic U(N)

theories and also in the bosonic O(N) model. Mostly, we will be interested in the large-N results for

operators built from the auxiliary field σ: σ itself, σk and σ∂sσ.

3.4.1 Some scalar operators

Let us consider the traceless (adjoint) scalar operator (OA)ij = ψ̄jψ
i − δij

N ψ̄ψ in the large N critical

fermion theory. Its leading order anomalous dimension can be fixed by starting with the 3-point

function

〈ψi(x1)ψ̄j(x2)(OA)lk(x3)〉 = (δljδ
i
k −

1

N
δijδ

l
k)

CψψO /x13 /x23

x
2∆ψ−∆O+2
12 x∆O+1

13 x∆O+1
23

, (3.4.1)

where the structure on the right-hand side is completely fixed by conformal symmetry, for general ∆ψ

and ∆O. Acting with the Dirac operators /∂1/∂2 on the right-hand side, we find

(2∆ψ + ∆O − d)(2∆ψ −∆O)(δljδ
i
k −

1

N
δijδ

l
k)CψψO

/x13 /x23

x
2∆ψ−∆O

12 x∆O+1
13 x∆O+1

23

+ . . . , (3.4.2)

where we have omitted terms proportional to the identity in the spinor space, which will not play a

role in the following leading order calculations. After writing ∆ψ = d/2− 1/2 + γψ, ∆O = d− 1 + γO,
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and expanding to leading order in the anomalous dimensions, the prefactor above becomes

(d− 2)(2γψ − γO) (3.4.3)

and hence this correlator can be used to fix γO in terms of γψ. Indeed, inserting the equation of

motion /∂ψ = − σψ√
N

on the left-hand side of (3.4.1), we get, to leading order at large N

− 1

N
〈ψiσ(x1)ψ̄jσ(x2)(OA)lk(x3)〉 = − 1

N
〈σ(x1)σ(x2)〉〈ψi(x1)ψ̄j(x2)(OA)lk(x3)〉 =

= − 1

N
(δljδ

i
k −

1

N
δijδ

l
k)
CσσCψψO /x13 /x23

x2
12x

d
13x

d
23

.
(3.4.4)

This gives:

γO = 2γψ +
Cσσ

N(d− 2)
=

4(d− 1)

d− 2
γψ . (3.4.5)

In d = 3, this agrees with the result obtained in [124] via a standard Feynman diagram calculation.

As far as we know, the general d result was not given elsewhere in the literature.

The same calculation can be applied in the case of the GNY model in d = 4− ε, where following

the similar steps we arrive at

γO = 2γψ + Cσσ
(g∗1)2

d− 2
=

3ε

N + 6
. (3.4.6)

Analogously, we can fix the anomalous dimension of the scalar singlet σ starting from the 3-point

function

〈ψi(x1)ψ̄j(x2)σ(x3)〉 = δij
Cψψσ /x13 /x23

x
2∆ψ−∆σ

12 x∆σ+1
13 x∆σ+1

23

. (3.4.7)

Direct application of two Dirac operators yields

(d− 2)(2γψ + γσ)δij
Cψψσ /x13 /x23

xd12x
2
13x

2
23

+ . . . (3.4.8)

where we used the formula (3.4.2) with the O replaced by σ, together with the expansion ∆σ = 1+γσ.

Inserting equations of motion, one gets

− 1

N
〈ψiσ(x1)ψ̄jσ(x2)σ(x3)〉 = − 1

N
〈σ(x1)σ(x2)〉〈ψi(x1)ψ̄j(x2)σ(x3)〉+ . . . = − 1

N

CσσCψψσ
xd12x

2
13x

2
23

+ . . . ,

(3.4.9)

where we used that the three-point function 〈σσσ〉 vanishes, and in the second step we have selected
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only the relevant contraction that gives the tensor structure in (3.4.8). The final result is then

γσ = −2γψ −
Cσσ

N(d− 2)
= −4γψ

d− 1

d− 2
, (3.4.10)

which agrees with the result quoted earlier (3.3.9). It is interesting to repeat the above calculation in

the GNY model. Using (3.4.2) and ∆σ = d/2− 1 + γσ, to leading order in the anomalous dimensions

we find the relation

2
(

2γψ + γσ −
ε

2

)
= −Cσσ(g∗1)2 = − 1

4π2
(g∗1)2 . (3.4.11)

Combining this with (3.3.43) and (3.3.45) obtained from the ψ and σ 2-point functions, we see that

we recover the correct fixed-point coupling given in (3.3.40).

It should be possible by similar methods to fix the scaling dimensions of higher order composites

of σ and ψ. We will not pursue this in detail here, and just use a shortcut to obtain the result for

a simple class of operators, namely the composites σk with twist k + O(1/N) (see also [124] for this

calculation in the case d = 3). We note that the diagrammatic expansion suggests that, to leading

order in 1/N , ∆σk is at most a quadratic function of k. More precisely, there are two diagrams,

which connect the σ legs pair by pair, so the k dependence for these is k(k − 1). There are also leg

corrections, which go like k. So, overall, we should have:

∆σk = k +
Ak2 +Bk

N
+O(1/N2) . (3.4.12)

We can then use the known results for k = 1 and k = 2 [102] to get:

∆σk = k +
2k(d− 1)(d(k − 1)− 2)

d− 2
γψ . (3.4.13)

Note that we may also write this result as

∆σk − k∆σ =
k(k − 1)

2

4d(d− 1)γψ
d− 2

=
k(k − 1)

2
(γσ2 − 2γσ) , (3.4.14)

where the right-hand side has the interpretation of interaction energy for the multi-particle state in

AdS which is dual to σk.

We may also apply the same method to the bosonic O(N) model in the 1/N expansion, which can

be developed using the action for the scalar field φi and the auxiliary field σ (2.3.2) used in Chapter

67



2.

Similarly to the fermionic calculation above, we can fix the anomalous dimension of the traceless

scalar Oij = φ(iφj) − δij

N φ2. One can study the following three-point function

〈φi(x1)φj(x2)Okl(x3)〉 = (δikδjl + δilδjk − 2

N
δijδkl)

CφφO

x
2∆φ−∆O

12 x∆O
13 x∆O

23

(3.4.15)

as constrained by the conformal symmetry. The dimensions of operators are power series in 1/N :

∆φ = d/2 − 1 + γφ, ∆O = d − 2 + γO. One can then act on this three-point function with the

Laplacians 21 and 22 at points 1 and 2 respectively. Explicit differentiation gives, to the leading

order in 1/N :

2(d− 2)(d− 4)(2γφ − γO)(δikδjl + δilδjk − 2

N
δijδkl)

CφφO

x4
12x

d−2
13 xd−2

23

, (3.4.16)

where we replaced the dimensions of the operators with the tree-level values where possible. Now,

inserting the equation of motion (2.3.4) in the correlation function, we get

1

N
〈σφi(x1)σφj(x2)Okl(x3)〉 =

1

N
〈σ(x1)σ(x2)〉〈φi(x1)φj(x2)Okl(x3)〉

=
1

N
(δikδjl + δilδjk − 2

N
δijδkl)

CσσCφφO

x4
12x

d−2
13 xd−2

23

(3.4.17)

and so to the lowest order in 1/N we obtain:

γO = 2γφ −
Cσσ

2N(d− 2)(d− 4)
= − 8γφ

d− 4
= −

2dΓ(d−1
2 ) sin(πd2 )

π
3
2 Γ(d2 + 1)

. (3.4.18)

Now the calculation for the σ operator is slightly more complicated although the general idea is

the same. We begin with the three-point function:

〈φi(x1)φj(x2)σ(x3)〉 = δij
Cφφσ

x
2∆φ−∆σ

12 x∆σ
13 x

∆σ
23

. (3.4.19)

Expanding ∆σ = 2 + γσ, and acting with the operators 21 and 22 gives:

2δij(d− 2)(d− 4)(γσ + 2γφ)
Cφφσ

xd12x
2
13x

2
23

+ . . . , (3.4.20)

where we omitted two other terms which do not contain γσ, and have a different coordinate dependence.
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Inserting the equations of motion and working to leading order at large N , we get:

1

N
〈σφi(x1)σφj(x2)σ(x3)〉

=
1

N

(
〈σ(x1)σ(x2)〉〈φi(x1)φj(x2)σ(x3)〉+ 〈φi(x1)φj(x2)〉〈σ(x1)σ(x2)σ(x3)〉+ . . .

)
=

1

N

(CσσCφφσ + CφφCσσσ)

xd12x
2
13x

2
23

+ . . . ,

(3.4.21)

where we have only kept the relevant structures that match (3.4.20). Comparing the two results, we

obtain the relation

γσ = −2γφ +

(
Cσσ +

CφφCσσσ
Cφφσ

)
1

2N(d− 2)(d− 4)
, (3.4.22)

where Cσσσ and Cφφσ are the 3-point function coefficients, which both start at order 1/N . Their ratio

is known to be, to leading order at large N [125]

Cσσσ
Cφφσ

=
2(d− 3)Cσσ

Cφφ
, (3.4.23)

so finally we find

γσ = −2γφ + (Cσσ + 2(d− 3)Cσσ)
1

2N(d− 2)(d− 4)
=

4(d− 1)(d− 2)

d− 4
γφ , (3.4.24)

which is the correct result [65].

The result for σk operators for arbitrary k was obtained in [45], and is again constrained to be a

quadratic function of k to leading order in 1/N . It reads

∆σk = 2k +
2k(d− 1)((k − 1)d2 + d+ 4− 3kd)

d− 4
γφ +O(1/N2) . (3.4.25)

We can also express this result in terms of “binding energies”

∆σk − k∆σ =
k(k − 1)

2

4d(d− 1)(d− 3)γφ
4− d

=
k(k − 1)

2
(γσ2 − 2γσ) . (3.4.26)

Quite interestingly, these vanish in d = 3, so that ∆σk = 2k + kγσ = k∆σ, as pointed out in [112].

In other words, from a bulk point of view, the interaction energy of the k-particle states of the AdS

scalar field appear to vanish to leading order in 1/N in the special case d = 3. We will comment on

this further below.
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Figure 3.1: Diagrams contributing to the anomalous dimension of σ∂sσ to order 1/N .

3.4.2 Spinning double-trace operators

In this section we turn our attention to the spinning operators constructed from the σ fields, σ∂sσ in

the bosonic O(N) model and the large-N Gross-Neveu model. The anomalous dimensions of σ∂sσ and

many other operators in the critical vector model were computed by Lang and Ruhl in [45]. Analogous

results for the GN model are not available to the best of our knowledge. While an extensive discussion

of the GN model can be found in many places, see e.g. [101, 116, 126], we will follow the conventions

used in [88] and collect below only the necessary ingredients. The momentum space propagators for

ψ and σ are:

Dψ =
/p

p2
, Dσ =

C̃σσ
(p2)d/2−1+δ

, C̃σσ = − 2dπd/2Γ(d− 1)

Γ
(
1− d

2

)
Γ
(
d
2

)2 , (3.4.27)

where δ is a regulator and the only interaction vertex is 1√
N
ψ̄ψσ. Let us write the full conformal

dimension of Os ∼ σ∂sσ as

∆σ∂sσ = 2∆σ + s+ γs = 2 + s+ 2γσ + γs . (3.4.28)

Note that in this and in the next subsection we adopt this definition of γs, which is naturally interpreted

as an interaction energy from AdS point of view.

The anomalous dimensions can be extracted by computing the 3-point functions 〈Osσσ〉. This is

most conveniently done in momentum space, and it is sufficient to set the momentum of the operator

Os to zero. There are two diagrams, given in figure 3.1, that contribute to the γs defined in (3.4.28)

(the leg corrections only affect γσ), where the blob corresponds to the operator insertion. Up to C̃σσ
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factors the integrals that correspond to these diagrams are, denoting by l the external momentum of

the σ legs:

I1 =

∫
ddp

(2π)d

∫
ddq

(2π)d
(z · q)str[/p(/p− /q)/p(/p− /l)]

(q2)d−2+2δ(p− q)2(p− l)2(p2)2
(3.4.29)

I2 =

∫
ddp

(2π)d

∫
ddq

(2π)d
(z · q)s

(q2)d−2+2δ

tr[/p(/p+ /q)(/p+ /q − /l)(/p− /l)]
p2(p− l)2(p+ q)2(p+ q − l)2

, (3.4.30)

where, as usual, we conveniently take z to be null, z2 = 0. The anomalous dimensions are related to

the 1/δ poles of these integrals. The second integral can be simplified by using

tr[/p(/p+ /q)(/p+ /q − /l)(/p− /l)] =
1

2

[
(p− l)2(p+ q)2 + (p+ q − l)2p2 − l2q2

]
(3.4.31)

and dropping the last term as it does not contribute to the divergent part. The integrals are then

standard and can be done with the help of

∫
ddq

(2π)d
(z · q)s

q2a(q − p)2b
=

Γ(d/2− b)Γ(a+ b− d/2)Γ(−a+ s+ d/2)(z · p)s

(4π)d/2Γ(a)Γ(b)Γ(−a− b+ s+ d)(p2)a+b−d/2 (3.4.32)

and similar formulae. The final results are:

γs=0 =
4(d− 1)d

d− 2
γψ , (3.4.33)

γs>0 = −2γσ
2d sin

(
πd
2

)
Γ
(
d
2

)2
π(d− 1)(d− 2)(d− 4)

Γ
(
s+ 2− d

2

)
Γ
(
s+ d

2

) . (3.4.34)

Note that the s = 0 result is not related to the s→ 0 limit of the non-zero spin result. This is because

the residue of the 1/δ-pole happens to be discontinuous at s = 0. As far as we know, the general spin

result was not derived earlier in the literature. As a check, we note that using the known anomalous

dimensions of σ and σ2 [102]

γσ = −4(d− 1)

d− 2
γψ , γσ2 = 4(d− 1)γψ , γσ2 − 2γσ =

4(d− 1)d

d− 2
γψ , (3.4.35)

we find agreement between γs=0 and the last expression in the above equation. A non-trivial con-

sistency check of the result (3.4.34) is the comparison with the 4 − ε expansion of the GNY model.
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Indeed, expanding (3.4.34) in d = 4− ε, we find

(2γσ + γs)
∣∣∣
d=4−ε

= −
2
(
3s2 + 3s− 2

)
ε

s(s+ 1)
+O(ε4) , (3.4.36)

which precisely agrees with (3.3.56).

From (3.4.34), we can extract the large spin behavior of the anomalous dimensions

γs =
16 sin2

(
πd
2

)
Γ(d− 2)

π2(4− d)

1

sd−2
+ . . . , (3.4.37)

suggesting that the leading term is due to the exchange of a tower of operators with twist d− 2, i.e.

the nearly conserved currents of the model at large N . We will comment further on this in the next

subsection.

Comparison to analytic bootstrap approach

Let us discuss the relation of the results of the previous subsection to the general predictions [39–41] for

the anomalous dimensions of double trace operators O∂sO, where O is a scalar primary of dimension

∆. One matches the anomalous dimension of the O∂sO operators exchanged in the “s-channel” of the

four-point function 〈OOOO〉 to the “t-channel” exchange of low-twist operators and their descendants.

The expansion organizes itself as a function of conformal spin [105]:

J2 = (∆ + s+ γs/2)(∆ + s+ γs/2− 1) . (3.4.38)

The contribution of the operator with spin l and twist τ exchanged in the t-channel is then:

γJ(τ, l) = −c0(τ, l)

Jτ

(
1 +

∞∑
k=1

ck
J2k

)
, (3.4.39)

where the coefficient c0 controlling the leading term in the large spin expansion is known from [39,40]:

c0(τ, l) =
C2
OOOτ

COτOτC
2
OO

(−1)lΓ(τ + 2l)Γ2(∆)

2l−1Γ2(∆− τ
2 )Γ2(l + τ

2 )
. (3.4.40)

In our case, O = σ and ∆ = 1 +O(1/N), and to leading order in 1/N we can study the exchange

of the following operators in the t-channel: σ, the tower σ∂lσ of twist 2 +O(1/N), and the fermionic
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higher-spin currents ψ̄γ̂∂̂l−1ψ of twist d−2+O(1/N). Now the contribution of the σ operator vanishes

since the three-point function 〈σσσ〉 = 0 identically in the fermion model due to the parity symmetry.

Further, we note that the σ∂lσ would contribute to (3.4.40) only at the order 1/N2, since at tree level

∆ = 1, τ = 2 and we would have hit Γ2(0) in the denominator, which gets resolved by expanding all

the dimensions to the first order in 1/N .

Hence, the exchange of the higher-spin currents of the form ψ̄γ̂∂̂l−1ψ should be what reproduces

the answer for the anomalous dimensions (3.4.34). The relevant OPE coefficients that appear in

(3.4.40) are explicitly computed in Appendix 3.5 as a function of the spin of the exchanged operator

l and are of order 1/N . This is sufficient to reproduce the leading large spin term in the anomalous

dimensions. In [41], it has been shown how to sum the contributions other the descendants in (3.4.39)

for the exchanged operator with a twist d − 2, which is the case at hand, and obtain the finite spin

dependence of the anomalous dimensions. The result is

γs(l) = −c0(d− 2, l)
Γ(s+ 1)Γ(2∆ + s− d

2 )

Γ(s+ d
2 )Γ(2∆ + s− 1)

. (3.4.41)

Notice that in our case ∆ = 1 is the tree-level dimension of the σ operator, and we have to sum over

the spin λ of the exchanged tower. Using (3.4.40) and the coefficient acr.F,s from (3.5.9), the sum we

need to perform is:

∞∑
l=2,4,6,...

16(2l + d− 3) sin2(dπ2 )Γ2(d− 2)Γ(l)

π2Γ(l + d− 2)
=

16 sin2(dπ2 )Γ(d− 2)

(d− 4)π2
. (3.4.42)

Note that this sum is power-like divergent for d < 4, and we have evaluated it by analytic continuation

in d, as usual in dimensional regularization. Putting it all together using (3.4.41), we arrive at the

same result (3.4.34), in a slightly different form:

γs = −
16 sin2(dπ2 )Γ(d− 2)Γ(s+ 2− d

2 )

N(d− 4)π2Γ(s+ d
2 )

. (3.4.43)

In particular, in d = 3 we obtain

γs =
32

π2(2s+ 1)

1

N
+O(1/N2) . (3.4.44)

Note that the anomalous dimensions are positive in 2 < d < 4 for all spins. This may seem surprising,
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since each even spin field exchange contributes, according to (3.4.39)-(3.4.40), a negative amount to

the anomalous dimensions (from AdS point of view, we expect attractive interactions due to each even

spin l). However, the infinite sum in (3.4.42) is divergent, and its regularization appears to yield a

positive final result. The fact that this procedure gives exact agreement with the direct diagrammatic

calculation of the previous subsection is a good check that the regularization of the sum makes sense.

Let us also include here some results for these operators in the scalar theory. The 1/N result for

γs has been obtained by Lang and Ruhl [45], and takes the form

γs = −2γσ
d(d− 3)

(d− 1)(d− 2)(d− 4)(s+ 1)(s+ 2)

(
d2 − 5d+ 6−

2Γ(d2 )Γ(s− d
2 + 4)

Γ(4− d
2 )Γ(d2 + s)

)
, (3.4.45)

with γσ given in (3.4.24). Note that in d = 3 both of the spin-dependent contributions vanish, and

the function (3.4.45) just reduces to 2γσ, so that ∆σ∂sσ = 2∆σ + s in d = 3. In other words, the

“binding energy” of the corresponding two-particle state in the AdS4 dual theory vanish, similarly to

what observed earlier for the σk operators. In the range 2 < d < 6 where the scalar CFT is unitary,

we note that that the anomalous dimensions are positive in 3 < d < 4, and negative in 2 < d < 3 and

4 < d < 6.9 In general d, the result (3.4.45) has the large spin expansion

γs = − 1

s2

2d(d− 3)3(d− 2) sin
(
πd
2

)
Γ
(
d−3

2

)
Nπ3/2(d− 4)Γ

(
d
2

) − 1

sd−2

128(d− 3) sin2
(
πd
2

)
Γ(d− 2)

Nπ2(d− 6)(d− 4)2
. (3.4.46)

Again, in light of the results of [39–41], we clearly see two different contributions in the t-channel

accounting for this behavior: the exchange of σ operator with twist 2, producing the 1/s2, and the

exchange of the higher spin tower φ∂lφ, accounting for the 1/sd−2. We can reproduce the full spin

dependence of the contribution generated by the higher-spin tower by taking ∆ = 2 in (3.4.41) and

using the bosonic OPE coefficients from (3.5.9):

Γ(s− d
2 + 4)

(s+ 1)(s+ 2)Γ(s+ d
2 )

∞∑
l=2,4,6,...

64(2l + d− 3) sin2(dπ2 )Γ2(d− 2)Γ(l + 1)

π2(d− 4)2Γ(l + d− 3)
=

=
128(d− 3) sin2(dπ2 )Γ(d− 2)

(d− 4)2(d− 6)π2

Γ(s− d
2 + 4)

(s+ 1)(s+ 2)Γ(s+ d
2 )
, (3.4.47)

where we have again regularized the sum by analytic continuation. This is exactly equal to the last

term in the expression (3.4.45). The other contribution in (3.4.45), which is responsible for the 1/s2

9The negativity in 4 < d < 6 is consistent with Nachtmann theorem [103], since in this range the operators ∼ σ∂sσ,
with τ = 2 +O(1/N), are the minimal twists in the σσ OPE.
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term in (3.4.46) at large spin, can be reproduced by using the known three-point function coefficients

〈σσσ〉 [125]:

C2
σσσ

C3
σσ

=
1

N

8(d− 3)2Γ(d− 2)

Γ(3− d
2 )Γ3(d2 − 1)

. (3.4.48)

Plugging this into (3.4.40), we see that the resulting factor precisely agrees with the first term in

(3.4.46). Remarkably, the full spin dependence can also be reconstructed in this case. This follows

from analysis of [41], because for the special value ∆ = τ = 2 all higher order coefficients ck in

(3.4.39) vanish, and the finite spin answer is simply obtained from (3.4.46) by replacing 1/s2 with

1/J2 = 1/(s+ 1)(s+ 2).

It is interesting to compare the above calculation to the case of the free fermionic and bosonic

vector models. In the free CFT, we of course expect no anomalous dimensions for the double trace

operators ∼ ψ̄ψ∂sψ̄ψ and ∼ φ2∂sφ2. But formally we can still apply the above analytic bootstrap

results, and we would then expect to recover the vanishing of the anomalous dimensions from the

sum over the infinite tower in the crossed channel. From a bulk point of view, this would correspond

to computing the tree level 4-point functions of the bulk scalar, reading off the contribution to the

binding energies of each diagram with a higher spin exchange (as well as the quartic scalar vertex),

and summing up over all spins.10 In the free fermion theory, using (3.4.40) and the OPE coefficients

in 3.5.3, we encounter the sum (we omit the l-independent overall factors, and recall that the ψ̄ψ

3-point function is zero)
∞∑

l=2,4,6,...

(2l + d− 3)Γ(d+ l − 2)

Γ(l)
= 0 , (3.4.49)

and in the scalar theory
∞∑

l=0,2,4,6,...

(2l + d− 3)Γ(d+ l − 3)

Γ(l + 1)
= 0 . (3.4.50)

Both of these sums, when regulated by analytic continuation in d, vanish. In d = 3, one may also

evaluate them by Riemann zeta-function regularization, see the next subsection. From the bulk per-

spective, the vanishing of the regularized sum over “binding energies” we encounter here is reminiscent

of the vanishing of the regularized sum over one-loop vacuum energies found in [128,129].

10Right the opposite was recently done in [127]: the quartic scalar self-interaction vertex was reconstructed in such a
way that the full four-point function matches that of the free scalar CFT.
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Chern-Simons vector models in d = 3

The analytic bootstrap results used in the previous subsection can be also readily applied to the

bosonic and fermionic 3d Chern-Simons vector models of [85, 86]. We consider U(Nc) Chern-Simons

theory at level k coupled to a fundamental scalar or fermion, in the large Nc limit with λ = Nc/k

fixed, and use the approach described above to compute the anomalous dimensions of the spinning

double trace operators ∼ φ̄φ∂sφ̄φ and ∼ ψ̄ψ∂sψ̄ψ.

Let us start with the scalar theory. The operators contributing in the t-channel, as before, will be

the higher-spin tower (which still has twist d − 2 + O(1/Nc), for any value of the ’t Hooft coupling)

and the scalar φ̄φ. The latter has dimension ∆ = d− 2 +O(1/Nc) = 1 +O(1/Nc), so its contribution

can be calculated exactly as a function of spin s using (3.4.41). Using the results of [21] which follow

from the weakly broken higher-spin symmetries, the OPE coefficients we need still take the form

(3.5.3), dressed with factors that depends on the parameters Ñ and λ̃ defined in [21], which can be

fixed [113,130] to be

Ñ = 2Nc
sin(πλ)

πλ
, λ̃ = tan(

πλ

2
) . (3.4.51)

Explicitly, using the results of [21], one finds that the contribution of the higher-spin tower acquires

a factor 1/Ñ , and the scalar contribution comes with a factor 1
Ñ

1
1+λ̃2

. Putting all the factors from

(3.4.39), (3.4.40), (3.4.41), (3.5.3) together in d = 3, we get11

γφ̄φ∂sφ̄φ = − 2

2s+ 1

 1

Ñ

∞∑
l=2,4,6,...

32

π2
+

1

Ñ

1

1 + λ̃2

16

π2

 =
1

Ñ

λ̃2

1 + λ̃2

32

π2(2s+ 1)
+O(1/N2

c ) , (3.4.52)

where we used the Riemann zeta function to regulate the sum (alternatively, one can regulate the sums

dimensionally as in the previous section). Note that the answer goes to zero as λ̃ → 0, as expected

since in that limit we recover the free scalar CFT, and for λ̃ → ∞ it goes into the 3d Gross-Neveu

result (3.4.44), as it should be in accordance with the 3d bosonization duality.12

Let us now move to the fermionic theory. The calculation is almost the same, with the difference

that the scalar contribution vanishes, since the three-point function of the scalar ψ̄ψ vanishes. As for

the higher-spin tower (which acquires a factor 1/Ñ as above), after plugging all the factors in d = 3,

11Keep in mind that we define γφ̄φ∂sφ̄φ = ∆φ̄φ∂sφ̄φ − s− 2∆φ̄φ. The scalar scaling dimension is ∆φ̄φ = 1 + γφ̄φ, but

γφ̄φ = f0(λ)/Nc +O(1/N2
c ) is not currently known to all orders in λ.

12To be precise, at λ̃ → ∞ we get the result for the U(k − Nc) GN model, and one should keep in mind that in
(3.4.44) N = Nctr1 = 2Nc.
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its contribution is proportional to the sum

∞∑
l=2,4,6,...

l2 = 4ζ(−2) = 0 (3.4.53)

using the same zeta function regularization (equivalently, one gets the same result using the dimension-

ally continued sum in (3.4.49)), and hence we conclude that γψ̄ψ∂sψ̄ψ = O(1/N2
c ) in the CS-fermion

model. Note that this result is expected from the absence of anomalous dimensions in the free fermion

theory, because apart from the overall factor of 1/Ñ instead of 1/N , the sum over the higher-spin

tower is otherwise identical in the CS-fermion theory and free fermion theory, and has to vanish in

the latter. This also explains the vanishing of the result (3.4.45) in the d = 3 critical scalar model:

the scalar exchange contribution is absent in this model as well (Cσσσ = 0 in the 3d critical O(N)

model), and the higher-spin tower contribution is the same up to the overall function of λ̃; this is

because the dimension of the external scalar is ∆ = 2 in both cases, and the relevant OPE coefficients

then coincide, see eq. (3.5.10). In this sense, the vanishing of the σ binding energies in the 3d critical

O(N) model can be seen as a manifestation of the 3d bosonization duality.

3.5 Appendix: OPE Coefficients from AdS/CFT

AdS/CFT relates the OPE coefficients of the UV and IR duals, i.e. the duals of the same bulk theory

for different choice of boundary conditions within the unitarity window [29,31]. We can use this fact

to compute some of the OPE coefficients in the critical O(N) vector model and Gross-Neveu model

using the OPE coefficients of the free scalar and free fermion, respectively.

The OPE coefficients we are interested in correspond to three-point function 〈JsJ0J0〉, where J0

has scaling dimension ∆ = 2 for the critical model and ∆ = 1 for GN, and Js are the totally symmetric

(nearly) conserved currents with twist τ = d−2+O(1/N). We define the normalized OPE coefficients

as as

as ≡
C2
s00

CssC2
00

, (3.5.1)
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where we the coefficients on the right-hand side are defined in our conventions by

〈J0(x1)J0(x2)〉 =
C00

x2∆
12

, 〈Ĵs(x1, z1)Ĵs(x2, z2) = Css

(
z1 · z2 − 2z1·x12z2·x12

x2
12

)s
x2∆s

12

,

〈Ĵs(x1, z1)J0(x2)J0(x3)〉 = Cs00

(
z1·x13

x2
13
− z1·x12

x2
12

)s
xτ12x

τ
13x

2∆−τ
23

≡ Cs00〈JsO∆O∆〉 ,

(3.5.2)

where z1, z2 are null vectors. The OPE coefficients for the free fermion theory were given in (3.2.28),

and for the scalar can be found in [84,127,131,132], and we obtain:

aB,s =

√
π2−d−s+7Γ

(
d
2 + s− 1

)
Γ(d+ s− 3)

NΓ
(
d
2 − 1

)2
Γ(s+ 1)Γ

(
d−3

2 + s
) , (3.5.3)

aF,s =

√
π(−)s2−d−s+5Γ

(
d
2 + s− 1

)
Γ(d+ s− 2)

NΓ
(
d
2

)2
Γ(s)Γ

(
d−3

2 + s
) . (3.5.4)

The three-point function of one higher-spin current Js and two scalar operators of dimension ∆

comes from the unique cubic interaction vertex in AdS

gs

∫
Φm(s)∇m(s)Φ0Φ0 = gsb̃s × 〈JsO∆O∆〉 , (3.5.5)

b̃s =
2−5+2sπ−d/2(−3 + d+ 2s)Γ

[
−1 + d

2 + s
]3

Γ[−3 + d+ s]Γ[−1 + s+ ∆]2

Γ[−2 + d+ 2s]2Γ[∆]2
, (3.5.6)

where gs is the coupling constant of the bulk theory and bs is a nontrivial factor produced by integrating

the vertex on boundary-to-bulk propagators [133]. The coupling constant gs can be chosen as to

reproduce the OPE coefficients Cs00 for free scalar ∆ = d − 2 or free fermion ∆ = d − 1. The

results [84,127] are

boson : gBs =
1√
N

π
d−3

4 2
1
2 (3d+s−1)Γ

(
d−1

2

)
Γ(d+ s− 3)

√
Γ
(
d−1

2 + s
)

Γ(s+ 1)
, (3.5.7)

fermion : (gFs )2 = (gBs )2 s

(d+ s− 3)
. (3.5.8)

Next, we can change the boundary conditions to ∆ = 2 and ∆ = 1, respectively, and recompute the
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bulk integral, i.e. bs. The result should give the OPE coefficients for the critical models:

acr.B,s =
2d−s+1Γ

(
d−1

2

)2
Γ(s+ 1)Γ

(
d
2 + s− 1

)
√
πNΓ

(
d−3

2 + s
)

Γ(d+ s− 3)
,

acr.F,s =
2d−s+1Γ

(
d−1

2

)2
Γ(s)Γ

(
d
2 + s− 1

)
√
πNΓ

(
d−3

2 + s
)

Γ(d+ s− 2)
.

(3.5.9)

The same result can, of course, be obtained on the CFT side by attaching two propagators of the

σ-field to the three-point functions of the free theories. As explained in [134, 135], the procedure

of attaching a σ line on the CFT side is in one-to-one correspondence with changing the boundary

condition on the bulk scalar propagator, and hence one is essentially guaranteed to obtain the same

result. Nevertheless, to double-check our results we have explicitly computed (3.5.9) directly on the

CFT side, and obtained the same result.

Note that in d = 3, when the leading large N dimensions of the scalar operator coincide in free

fermion/critical scalar and free scalar/critical fermion, we have

aF,s|d=3 = acr.B,s|d=3 ,

aB,s|d=3 = acr.F,s|d=3 .

(3.5.10)
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Chapter 4

Large N Chern-Simons Vector

Models

4.1 Introduction and Summary

Chern-Simons (CS) gauge theories coupled to massless matter fields lead to a large class of conformal

field theories in three dimensions, with or without supersymmetry. A particularly interesting non-

supersymmetric example is obtained by coupling a U(N) (or O(N)) CS gauge theory to a fermion

or scalar in the fundamental representation [85, 86]. The Chern-Simons coupling k is quantized and

cannot run (up to a possible integer shift at one loop). Therefore, in the fermionic case it is sufficient

to tune away the relevant mass term to obtain a conformal field theory (CFT) for any N and k [85].1

In the scalar case, one has a classically marginal coupling φ6 that can get generated along RG flow, but

in the presence of CS interactions one can find zeroes of its beta function, at least for sufficiently large

N [86]. One may also obtain “critical” versions of these models by adding quartic self-interactions

for the fundamental matter fields. In the scalar case, this leads to an IR fixed point which is a

generalization of the familiar critical O(N) model. In the fermionic case, at least in the large N

expansion, one finds UV fixed points which generalize the critical 3d Gross-Neveu model.

The CFTs described above may be viewed as generalizations of the well-known bosonic and

fermionic vector models by the addition of CS interactions, and we may refer to them as “Chern-

1The level k has to be half-integer due to the parity anomaly [136–138].
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Simons vector models”. Their investigation was initially motivated by the study of the AdS/CFT

duality between Vasiliev higher-spin theory in AdS4 [26]2 and free/critical vectorial CFTs with scalar

or fermionic fields [29, 139, 140]. Gauging the global symmetries of the vector model by means of the

CS gauge theory leads to a natural way to implement the singlet constraint, which is necessary in the

conjecture of [29]. Remarkably, it turns out that in the ’t Hooft limit of large N with λ = N/k fixed,

the CS vector models admit an approximate higher-spin (HS) symmetry, similarly to their ungauged

versions, in the sense that the currents js are approximately conserved and have small anomalous

dimension at large N [85, 86]. The fact that the anomalous dimensions are generated through 1/N

corrections implies that the holographic dual to the CS vector models should be a parity breaking

version of Vasiliev HS gravity, where the HS fields are classically massless, and masses are generated

via bulk loop diagrams. The bulk HS theory is characterized by a parity breaking phase θ0, which is

mapped to the CFT ’t Hooft coupling λ. See e.g. [89, 91,141] for reviews of this duality.

A variety of new techniques have been developed and applied recently to the study of bosonic and

fermionic vector models [24, 33, 52, 84, 88, 92–98, 106, 119, 142, 143], and bootstrap methods have also

been applied for studying operators with large spin, e.g. [39,40,62,104,105,107]. Partially motivated

by this body of works, we study the spectrum of 1/N scaling dimensions of single-trace, primary

operators with s ≥ 1 in Chern-Simons vector models.

As we review in section 4.2, the spectrum of single-trace primary operators in these models is very

simple: it just consists of bilinears in the fundamental matter fields. These include a scalar operator

(φ̄φ or ψ̄ψ), and a tower of spinning operators js of all integer spins. Owing to the topological nature

of the CS gauge field, the addition of the CS interactions does not lead to any new local operator on

top of the bilinears. It follows, as will be reviewed in more detail below, that the non-conservation of

the HS currents js must take the schematic form [85,86,118]

∂ · js ∼
∑
s1,s2

1

N
f (3)
s,s1,s2(λ)∂njs1∂

mjs2 +
∑

s1,s2,s3

1

N2
f (4)
s,s1,s2,s3(λ)∂njs1∂

mjs2∂
pjs3 , (4.1.1)

where the “double-trace” and “triple-trace” operators on the right-hand side correspond to products

of the bilinears and their derivatives, and no “single-trace” operator can appear, since there are none

in the spectrum with the correct quantum numbers. The weakly broken HS symmetries corresponding

to (4.1.1) can be used to constrain all planar 2-point and 3-point functions of the single-trace operators

2See for instance [27,90,91] for a review of the 4d Vasiliev equations.
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in terms of two parameters [118].3 The non-conservation equation (4.1.1) also encodes the anomalous

dimensions of the weakly broken currents: schematically, γs = ∆s − s − 1 ∼ 〈∂ · js|∂ · js〉/〈js|js〉.

Because the right-hand side of (4.1.1) contains no single-trace operators, it follows that the anomalous

dimensions vanish at planar level, and the leading term is of order 1/N :

∆s = s+ 1 +
γ(1)(s, λ)

N
+
γ(2)(s, λ)

N2
+ . . . . (4.1.2)

In this chapter, we compute the term of order 1/N in the anomalous dimensions (4.1.2) for all

s ≥ 1 operators, in both fermionic and bosonic CS vector models, and to all orders in λ. As described

in section 4.3.1, using the slightly broken higher-spin symmetry, one can show that the anomalous

dimensions, or equivalently the twists τs = ∆s − s, of the HS operators in the bosonic and fermionic

CS-vector models must take the form:

τs − 1 =
1

Ñ

(
as

λ̃2

1 + λ̃2
+ bs

λ̃2

(1 + λ̃2)2

)
+O(

1

N2
) , (4.1.3)

where Ñ and λ̃ are the parameters introduced in the analysis of [118], as reviewed in section 4.2 and

4.3 below. The spin-dependent coefficients as and bs can be determined by computing the 2-point

function of the operator appearing in the non-conservation equation (4.1.1), neglecting the triple-trace

term which does not affect the anomalous dimensions to this order. In section 4.3 we constrain the

divergence of the HS currents using conformal invariance alone, up to some spin-dependent numerical

coefficients, and in section 4.4 we use the classical equations of motion to calculate the divergence

explicitly and fully fix the structure of the double-trace part of (4.1.1). A priori, the values of as and

bs may be different for the fermionic and bosonic theory. However, in our calculations below, we find

that they are identical for both theories, and, in the case of U(N) gauge group, they are given by

as =


16

3π2
s−2
2s−1 , for even s ,

32
3π2

s2−1
4s2−1 , for odd s ,

(4.1.4)

bs =


2

3π2

(
3g(s) + −38s4+24s3+34s2−24s−32

4s4−5s2+1

)
, for even s ,

2
3π2

(
3g(s) + 20−38s2

4s2−1

)
, for odd s ,

(4.1.5)

3In the case of regular CS-scalar theory or critical CS-fermion theory, there is an additional marginal parameter
corresponding to sextic couplings.
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with

g(s) =

s∑
n=1

1

n− 1/2
= γ − ψ(s) + 2ψ(2s) = Hs−1/2 + 2 log(2) , (4.1.6)

where ψ(x) is the digamma function, and Hn the Harmonic number. In section 4.4, we also present the

results for Chern-Simons theories based on O(N) gauge group, which give slightly different coefficients

that are reported in eq. (4.3.35). As a consistency check, note that the anomalous dimensions vanish

for s = 1 and s = 2, as expected.

While the functions Ñ and λ̃ are not fixed by the weakly broken HS symmetry analysis, they can

be fixed by an explicit calculation of 2-point and 3-point functions, and they were found to be [113,130]

Ñ = 2N
sin(πλ)

πλ
, λ̃ = tan(

πλ

2
) , (4.1.7)

in both CS-scalar and CS-fermion theories, in terms of the respective N and λ. Using these into

(4.1.3), the anomalous dimensions take the form

τs − 1 =
πλ

2N sin(πλ)

(
as sin2(

πλ

2
) +

bs
4

sin2(πλ)

)
. (4.1.8)

As an independent check of this result, in section 4.5 we also perform a direct Feynman diagram

calculation in the CS-fermion model, from which we find the same values of the as and bs coefficients.

Note that due to the harmonic sum in (4.1.5), we have bs ' 2
π2 log s for s� 1, while as is constant

at large s, and so the large spin behavior of the anomalous dimensions is

τs − 1 ' 1

Ñ

λ̃2

(1 + λ̃2)2

2

π2
log s =

λ sin(πλ)

4πN
log s . (4.1.9)

This logarithmic behavior is a hallmark of gauge theory, and is expected from general arguments [48],

see also the recent bootstrap analysis in [62]. The coefficient f(λ) = λ sin(πλ)
4πN of log smay be interpreted

as the “cusp anomalous dimension” of the model; it would be interesting to see if it can be reproduced

by computing the expectation value of a Wilson loop with a light-like cusp.

The result (4.1.8) applies to the “regular” CS-fermion and CS-scalar models. In the critical models,

a calculation using the classical equations of motion, extended to all orders in λ by using the results
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of [118], yields

τ crit.
s − 1 =

1

Ñ

(
as

1

1 + λ̃2
+ bs

λ̃2

(1 + λ̃2)2

)
=

πλ

2N sin(πλ)

(
as cos2(

πλ

2
) +

bs
4

sin2(πλ)

)
, (4.1.10)

for both the critical CS-scalar and critical CS-fermion theory. In particular, at λ = 0, we recover the

anomalous dimensions in the usual (Wilson-Fisher) critical O(N) model [33, 45, 84, 142] and critical

GN model [87,119], which happen to coincide in 3d

γW.F.
s = γGN

s =
1

2N
as =


8

3Nπ2
s−2
2s−1 , for even s ,

16
3Nπ2

s2−1
4s2−1 , for odd s .

(4.1.11)

Note that the same anomalous dimensions arise in the strong coupling limit, λ → 1 (λ̃ → ∞) of the

regular CS-fermion and CS-scalar result (4.1.8). More precisely, in this limit one finds

τs − 1
λ→1' 1

2(k −N)
as , (4.1.12)

which are the anomalous dimensions in the U(k − N) critical Wilson-Fisher or Gross-Neveu model.

This is a manifestation of the “3d bosonization” duality [85, 113, 118] which conjecturally relates the

critical/regular CS-scalar theory to the regular/critical CS-fermion theory. The precise form of the

duality was spelled out in [113,144], and reads4

U(N)k−1/2 CS− Fermion ⇔ U(|k| −N)−k Critical CS− Scalar , (4.1.13)

and a similar duality relating the regular CS-scalar to the critical CS-fermion.5 So far we have

assumed that k is the CS level defined in the dimensional reduction scheme [146], where no one-loop

renormalization of the level occurs. To write the duality in a more familiar form, it is useful to express

it in terms of κ = k − sign(k)N ; this is the definition of the CS-level that arises when the theory is

regularized with a Yang-Mills term in the UV.6 In terms of this, the duality reads

U(N)κ−1/2 CS− Fermion ⇔ U(|κ|)−N Critical CS− Scalar , (4.1.14)

4Versions of this duality map involving the SU(N) gauge group were also recently proposed in [144], where the
mapping of baryon and monopole operators was discussed (see also [145]).

5In this case, the duality at large N also entails a mapping [130] between the additional marginal couplings g6(ψ̄ψ)3

and λ6(φ∗φ)3 in these models.
6This definition of κ agrees with the level of the WZW theory dual to the CS theory.
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and it can be recognized as a generalization of level-rank duality in pure CS theory [147–149]. Several

non-trivial tests of the duality have been obtained in the large N ’t Hooft limit [113, 130, 150–160].

If we denote by Nb and λb the rank and coupling in the critical CS-scalar theory, and by Nf , λf the

ones in the CS-fermion theory, in the large N limit (where we can neglect the half-integer shift of the

level on the fermionic side), the duality implies the map

λb = λf − sign(λf ) ,
Nb
|λb|

=
Nf
|λf |

, (4.1.15)

or equivalently Ñb = Ñf , λ̃2
b = 1/λ̃2

f . Comparing (4.1.8) and (4.1.10), we see that the anomalous

dimensions are indeed mapped into each other under the duality. Furthermore, by our explicit calcu-

lation using the classical equations of motion in section 4.4, we will verify that the non-conservation

equations (4.1.1) in the dual theories correctly map into each other, including the normalization

factors.

The “3d bosonization” (4.1.13) may also be regarded as a non-supersymmetric version of the

supersymmetric dualities [161, 162], which are well established at finite N and k. Therefore, it is

plausible that the bose/fermi duality (4.1.13) holds away from the large N limit. For small N and k,

(4.1.13) and related dualities may have interesting applications in condensed matter physics, see for

example [163–168] for recent closely related work. While exact results at finite N and k are hard to

obtain, it would be interesting to see if the subleading terms in the large N expansion of the anomalous

dimensions (or other quantities such as the thermal free energy) may be also computed for finite λ,

and whether they agree with the duality. Note that the half-integer shift in the CS-fermion level can

play a non-trivial role in this case. As a first step towards determining subleading corrections at large

N , in section 4.4 we use the classical equations of motion method to fix the terms of order λ2/N2 in

the anomalous dimensions of the CS-scalar and CS-fermion models. In particular, this result gives the

term of order 1/k2 in the scaling dimensions of the spin-s operators in the U(1)k CS theory coupled

to a fundamental fermion.7

Besides encoding the anomalous dimensions of the HS operators, the current non-conservation

equation (4.1.1) can also be used to completely fix (including the overall normalization) the parity

7In one version of the dualities put forward in [144], see also [165], the U(1)−1/2 CS-fermion theory is related to the
critical O(2) model without CS gauge field. Our result for the anomalous dimensions γs in the U(1)k theory to order
1/k2 shows logarithmic behavior at large s. On the other hand, we do not expect logarithmic growth in the critical
O(2) model. It is plausible that the log s behavior disappears in the strongly coupled (k = −1/2) theory, but it would
be interesting to understand this better.
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odd structure in the planar 3-point functions of 〈js1js2js3〉 when the triangular inequality is violated,

i.e. s3 > s1 + s2; this is the case where the 3-point function breaks the js3 current conservation.

In section 4.6, we use our results from the classical divergence calculation to determine explicitly all

such parity odd 3-point functions. In particular, we derive some recursion relations that can be used

to obtain the explicit form of the 3-point functions for general spins. The parity-odd three-point

functions are further analyzed in Appendix 4.8, with some examples listed for low spins in Appendix

4.9.

An interesting open problem that we do not address in this chapter is the calculation of the scaling

dimension of the scalar operators φ̄φ or ψ̄ψ. It is possible to argue [85, 86] based on the structure

of the HS breaking equations (where the scalar operators can appear on the right-hand side) that

they must have dimensions ∆ = 1 + O(1/N) or ∆ = 2 + O(1/N), but it is not obvious if the weakly

broken HS symmetry can be used to determine the order-1/N correction for finite λ. A direct all-

orders diagrammatic calculation may in principle be possible, but it appears to require a currently

unavailable ingredient: the ladder diagram of [154,156] for general off-shell external momenta.

Another interesting direction would be to extend the results of this chapter to various other related

CS-matter theories. As an example, U(N)×U(M) Chern-Simons theories coupled to bi-fundamental

matter, also possess a weakly broken HS symmetry when M/N � 1 [141, 169, 170], and the methods

used in this chapter should be applicable to this class of models. As the non-supersymmetric theories

have two independent Chern-Simons levels, the 1/N anomalous dimensions here appear to depend

on two independent parameters, so it would be interesting to see how these parameters relate to the

general analysis of [118] (which, in its present form, applies to theories with even spin currents only).

It may be also interesting to consider general CS-vector models [153] with fundamental boson and

fermions on the same side (including in particular the supersymmetric theories as a special case).

Perhaps the most interesting extension of this work would be to calculate the anomalous dimensions

of higher spin operators in the N = 6 ABJ theory [171], in the regime M � N , which has been

conjectured to be dual to a particular limit of type IIA string theory. Our results here do not directly

carry over to this case because of the additional matter fields and the presence of the Chern-Simons

coupling for the second gauge field, but we expect a similar analysis to be possible in principle. We

hope to return to this in future work.

As mentioned earlier, the weakly broken HS operators should correspond in the dual AdS4 theory
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Figure 4.1: The one-loop bulk diagrams that are expected to reproduce the 1/N term in the anomalous
dimensions of the HS currents at the boundary.

to classically massless HS gauge fields that acquire masses via loop corrections, through a HS analogue

of the Higgs mechanism [32].8 It would be interesting to see if the result for the anomalous dimensions

(4.1.8) can be reproduced by a one-loop calculation in the parity breaking higher-spin theory, corre-

sponding schematically to the diagrams depicted in figure 4.1. Note that the coupling constant in the

bulk is fixed by the duality to be 1/GN ∼ Ñ = 2N sin(πλ)
πλ , and the parity breaking 3-point couplings

are expected to depend on the bulk parameter θ0 as godd
ss′0 ∼ sin θ0 and godd

ss′s′′ ∼ sin(2θ0) (see e.g. [89]),

and we also have geven−A
ss′s′′ ∼ cos2(θ0), geven−B

ss′s′′ ∼ sin2(θ0). Therefore we see that if θ0 = πλ/2, which

is required for agreement of the tree-level 3-point functions, the bulk one-loop diagrams would yield

the expected coupling dependence we found in (4.1.8). It remains to be seen if the spin-dependent

coefficients can be reproduced from the AdS calculation.

4.2 The Chern-Simons vector models

The action for the U(N) Chern-Simons theory at level k coupled to a massless fundamental scalar

field is given in our conventions by

S =
ik

4π
SCS +

∫
d3x

(
Dµφ̄D

µφ+
λ6

N2
(φ̄φ)3

)
, (4.2.1)

where

SCS =

∫
d3xεµνρTr(Aµ∂νAρ −

2i

3
AµAνAρ) . (4.2.2)

8The role of the Higgs field is played in this case by a multi-particle state in the bulk which is dual to the operator
appearing on the right-hand side of (4.1.1).
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We work in Euclidean signature throughout the chapter, and use the conventions Dµφ = ∂µφ− iAµφ,

Dµφ̄ = ∂µφ̄ + iφ̄Aµ, with Aµ = AaµT
a, where T a are the generators of U(N) in the fundamental

representation. One can show that in the large N limit with λ = N/k and λ6 fixed, the classically

marginal coupling λ6 is in fact exactly marginal. Hence, in the large N limit the model (4.2.1) defines

a CFT (provided the scalar mass is suitably tuned to zero) labeled by two marginal parameters λ, λ6

9. The value of λ6 does not affect the anomalous dimensions of the higher-spin operators to the order

1/N we consider, and hence we will neglect this coupling in the following.

One may define another bosonic CFT, sometimes referred to as the critical bosonic theory, by

adding to (4.2.1) a quartic interaction λ4

N (φ̄φ)2 and flowing to the infrared. Rewriting the quartic

coupling with the aid of a Hubbard-Stratonovich auxiliary field σb, the action of the IR CFT may be

written as

Scrit =
ik

4π
SCS +

∫
d3x

(
Dµφ̄D

µφ+
1

N
σbφ̄φ

)
, (4.2.3)

where the quadratic term in σb was dropped, which is appropriate in the IR limit. The factor of

1/N was introduced so that the 2-point function of σb scales like N . Note that the φ6 term can be

dropped since this coupling becomes irrelevant in the IR. This model defines a generalization of the

Wilson-Fisher CFT by the addition of the Chern-Simons gauge coupling.

The action of a fundamental massless fermion coupled to the U(N) CS gauge field at level k is

given by

S =
ik

4π
SCS +

∫
d3xψ̄ /Dψ , (4.2.4)

where we define /D = γµDµ and Dµψ = ∂µψ − iAµψ. Note that the level k should be half-integer

due to the parity anomaly, however this condition will not be important for the large N computations

we will perform below. The action (4.2.4) defines a CFT labeled by N and λ = N/k, provided the

fermion mass term is tuned to zero.

Analogously to the scalar case, one may add to the model (4.2.4) a quartic self-interaction g4

N (ψ̄ψ)2.

Such theory is expected to have, at least in the large N limit, a non-trivial UV fixed point which is a

generalization of the critical 3d Gross-Neveu model. The action describing the UV CFT can be taken

to be

Scrit =
ik

4π
SCS +

∫
d3x

(
ψ̄ /Dψ +

1

N
σf ψ̄ψ

)
, (4.2.5)

9Away from the N →∞ limit, βλ6
(λ6, λ) 6= 0, but one finds fixed points with λ6 = λ∗6(λ) [86].
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where σf is the auxiliary Hubbard-Stratonovich field, and the quadratic term was dropped as appropri-

ate in the UV limit. At largeN , the model also possesses an exactly marginal coupling g6(ψ̄ψ)3 ∼ g6σ
3
f .

This extra coupling (which is mapped under the bose-fermi duality to the λ6 coupling in the CS-boson

theory) does not affect the quantities we will compute in this chapter, and we will neglect it below.

4.2.1 The “single-trace” operators

Free theories Let us first review the spectrum of “single-trace” operators in the free bosonic and

fermionic U(N) vector models. In the scalar model, the spectrum consists of a scalar operator

j0 = φ̄φ (4.2.6)

with scaling dimension ∆ = 1, and a tower of exactly conserved currents js ∼ φ̄∂sφ of all integer

spins. To give the explicit form of these currents, as usual we introduce an auxiliary null vector zµ,

zµzµ = 0, and define the index-free operators

js(x, z) = jµ1···µsz
µ1 · · · zµs . (4.2.7)

A generating function Jb(x, z) =
∑∞
s=0 js(x, z) of the higher-spin operators in the scalar theory is

given by [172]

Jb = φ̄(x)fb(z ·
←−
∂ , z ·

−→
∂ )φ(x) = fb(∂̂1, ∂̂2)φ̄(x1)φ(x2)|x1,x2→x ,

fb(u, v) = eu−v cos(2
√
uv) .

(4.2.8)

In the first line, we have introduced a bilocal notation which will be useful below, and we defined

the shorthand ∂̂ ≡ z · ∂. One may restore the explicit indices on the currents by acting with the

differential operator (1.4.2) in z-space. For instance, to compute the divergence of the current js, one

can evaluate ∂µDz
µjs(x, z) ∝ ∂µjµµ2···µsz

µ2 · · · zµs . Using the free equation of motion ∂2φ = 0, one

can explicitly check that the currents in (4.2.8) are conserved. Indeed, the condition ∂µDz
µJb = 0

turns into the differential equation

(
1

2
(∂u + ∂v) + u∂2

u + v∂2
v

)
fb(u, v) = 0 , (4.2.9)
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which is seen to be satisfied by the generating function given above. Expanding (4.2.8) in powers of

z, one may also deduce the following explicit expression for the currents

jb
s (x, z) =

s∑
k=0

(−1)k+s

s!

2s

2k

 ∂̂k1 ∂̂
s−k
2 φ̄(x1)φ(x2)|x1,x2→x . (4.2.10)

Using the free scalar propagator

〈φ̄(x)φ(0)〉 =
1

4π|x|
, (4.2.11)

it is straightforward to derive the 2-point function normalization of the higher-spin operators in the

free scalar theory. One finds

〈jb
s (x, z)jb

s (0, z)〉 = Nns
(z · x)2s

(x2)2s+1
,

ns =
24s−5Γ

(
s+ 1

2

)
π5/2s!

.

(4.2.12)

Similarly, for the ∆ = 1 scalar we have

〈j0(x)j0(0)〉 =
N

16π2x2
≡ Nn0

x2
. (4.2.13)

In the free fermionic U(N) vector model, the single-trace operators consist of the parity odd scalar

j̃0 = ψ̄ψ (4.2.14)

with ∆ = 2, and the conserved higher-spin currents js ∼ ψ̄γ∂s−1ψ, given explicitly by the generating

function [85]

Jf = ψ̄(x)z · γff(z ·
←−
∂ , z ·

−→
∂ )ψ(x) = ff(∂̂1, ∂̂2)ψ̄(x1)γ̂ψ(x2)|x1,x2→x ,

ff(u, v) = eu−v
sin(2

√
uv)

2
√
uv

.
(4.2.15)

To check that these currents are conserved when ψ obeys the free equation of motion, one can verify

that ∂µDz
µJf(x, z) = 0. This yields

(
3

2
(∂u + ∂v) + u∂2

u + v∂2
v

)
ff(u, v) = 0 , (4.2.16)

which is satisfied by the generating function in (4.2.15). By expanding in powers of z, one can also
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derive the following explicit form

jf
s(x, z) =

s−1∑
k=0

(−1)k+s+1

2s!

 2s

2k + 1

 ∂̂k1 ∂̂
s−k−1
2 ψ̄(x1)γ̂ψ(x2)|x1,x2→x . (4.2.17)

Using the free fermion propagator

〈ψ(x)ψ̄(0)〉 =
1

4π

/x

x3
, (4.2.18)

one finds that the currents in the free fermion theory (4.2.15), (4.2.17) have exactly the same 2-point

normalization as the scalar ones

〈jf
s(x, z)j

f
s(0, z)〉 = Nns

(z · x)2s

(x2)2s+1
, ns =

24s−5Γ
(
s+ 1

2

)
π5/2s!

. (4.2.19)

For the parity odd scalar operator, one finds

〈j̃0(x)j̃0(0)〉 =
N

8π2x4
≡ Nñ0

x4
. (4.2.20)

In the calculations below, we will sometimes find it convenient to introduce explicit light-cone

coordinates, with metric

ds2 = 2dx+dx− + dx2
3 . (4.2.21)

When we do this, we will take the auxiliary null vector to be zµ = δµ−, and so js(x, z) = js−−···−,

∂̂ = ∂− and z · x = x−.

Interacting theories When the Chern-Simons coupling is turned on, the higher-spin operators

defined above should be made gauge invariant by replacing derivatives with covariant derivatives.

The currents in the bosonic theories are then

Jb = φ̄(x)fb(
←−
D̂,
−→
D̂)φ(x) =

∞∑
s=0

jb
s (x, z) ,

jb
s (x, z) =

s∑
k=0

(−1)k+s

s!

2s

2k

 D̂k
1D̂

s−k
2 φ̄(x1)φ(x2)|x1,x2→x ,

(4.2.22)
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where D̂ = zµDµ, and recall D̂φ = ∂̂φ − iÂφ, D̂φ̄ = ∂̂φ̄ + iφ̄Â. Similarly, in the fermionic theories

one has

Jf = ψ̄(x)γ̂ff(
←−
D̂,
−→
D̂)ψ(x) =

∞∑
s=1

jf
s(x, z) ,

jf
s(x, z) =

s∑
k=0

(−1)k+s+1

2s!

 2s

2k + 1

 D̂k
1D̂

s−k
2 ψ̄(x1)γ̂ψ(x2)|x1,x2→x .

(4.2.23)

Note that contracting with the null vector zµ automatically projects the currents onto their symmetric

traceless part. The higher-spin operators above, together with the scalars j0 = φ̄φ and j̃0 = ψ̄ψ,

exhaust the single-trace spectrum in the interacting theories as well [85,86]. Note that the CS equation

of motion k
4π ε

µνρ(Fνρ)
i
j = (Jµ)ij , where (Jµ)ij is the U(N) current, implies that naive single-trace

operators obtained by inserting factors of the field strength inside matter bilinears are in fact multi-

trace.

In the interacting theory the higher-spin currents are no longer conserved, however the breaking

is small at large N and implies that anomalous dimensions are generated starting at order 1/N . The

2-point and 3-point functions of the bilinear operators can be fixed in the planar limit and to all

orders in λ by using the weakly broken higher-spin symmetry [118] and explicit computations for low

spins [113,130].

In the CS-boson theory, one finds for the exact planar 2-point functions [113]

〈jb
s (x, z)jb

s (0, z)〉 = N
sin(πλ)

πλ
ns

(z · x)2s

(x2)2s+1
,

〈j0(x)j0(0)〉 =
2N tan(πλ2 )

πλ

n0

x2
.

(4.2.24)

In terms of the parameters Ñ and λ̃ introduced in the analysis of [118], these read10

〈jb
s (x, z)jb

s (0, z)〉 = Ñ〈js(x, z)js(0, z)〉sc ,

〈j0(x)j0(0)〉 = Ñ(1 + λ̃2)〈j0(x)j0(0)〉sc ,
(4.2.25)

where the correlators on the right-hand side refer to the theory of a single real free scalar, and we

used [113]

Ñ = 2N
sin(πλ)

πλ
, λ̃ = tan(

πλ

2
) . (4.2.26)

10Note that the scalar operator j0 = φ̄φ has a different normalization from the one chosen in [118]. They are related
by jMZ

0 = j0/(1 + λ̃2). Similarly, in the fermionic theory we define j̃0 = ψ̄ψ, j̃MZ
0 = j̃0/(1 + λ̃2).
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The 3-point functions of operators of non-zero spin are fixed to be

〈jb
s1j

b
s2j

b
s3〉 = Ñ

[
1

1 + λ̃2
〈js1js2js3〉sc +

λ̃2

1 + λ̃2
〈js1js2js3〉fer +

λ̃

1 + λ̃2
〈js1js2js3〉odd

]
, (4.2.27)

where the suffix ‘sc’ and ‘fer’ refer to the correlators in the (real) free scalar and free fermion theories,

and the ‘odd’ term is a structure which breaks parity. It also breaks current conservation when s1, s2, s3

do not satisfy the triangular inequality, as will be explained below. When one of the operators is the

scalar j0 = φ̄φ, the 3-point functions read

〈jb
s1j

b
s2j0〉 = Ñ

[
〈js1js2j0〉sc + λ̃〈js1js2j0〉odd

]
. (4.2.28)

Here 〈js1js2j0〉odd is a parity odd tensor structure that breaks the spin s1 current conservation when

s1 > s2. Similarly one can write down the expression for correlators involving two or three scalar

operators: these are completely fixed by conformal invariance up to the overall constant, and do not

play a role in the analysis of the higher-spin anomalous dimensions to order 1/N .

In the CS-fermion theory (4.2.4), one finds the analogous results [130]

〈jf
s(x, z)j

f
s(0, z)〉 = Ñ

ns(z · x)2s

2(x2)2s+1
= Ñ〈js(x, z)js(0, z)〉fer ,

〈j̃0(x)j̃0(0)〉 = Ñ(1 + λ̃2)
ñ0

2x4
= Ñ(1 + λ̃2)〈j̃0(x)j̃0(0)〉fer ,

(4.2.29)

where the subscript ‘fer’ indicates correlators in the free theory of a single real fermion. The parameters

Ñ and λ̃ are given in terms of N , λ by the same expressions as in (4.2.26). The 3-point functions are

〈jf
s1j

f
s2j

f
s3〉 = Ñ

[
1

1 + λ̃2
〈js1js2js3〉fer +

λ̃2

1 + λ̃2
〈js1js2js3〉sc +

λ̃

1 + λ̃2
〈js1js2js3〉odd

]
, (4.2.30)

and

〈jf
s1j

f
s2 j̃0〉 = Ñ

[
〈js1js2 j̃0〉fer + λ̃〈js1js2 j̃0〉odd

]
. (4.2.31)

The ‘odd’ structure in the above equation breaks current conservation on js1 when s1 > s2. It breaks

parity, but note that since j̃0 = ψ̄ψ is parity odd, this tensor structure is actually parity even.

Let us now discuss the critical models defined by (4.2.3) and (4.2.5). In the scalar theory, the

auxiliary field σb replaces the scalar operator φ̄φ, and in the IR it behaves as a scalar operator with

scaling dimension ∆ = 2 +O(1/N). To leading order at large N , its two-point function is essentially
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the inverse of the φ̄φ 2-point function (in momentum space), and reads

〈σb(x)σb(0)〉 = N
4πλ

tan(πλ2 )

1

π2x4
. (4.2.32)

Note that this result is valid to all orders in λ. Defining the operator j̃crit.bos.
0 = σb/(4πλ), one finds

〈j̃crit.bos.
0 (x)j̃crit.bos.

0 (0)〉 =
N

4πλ tan(πλ2 )

1

π2x4
= Ñ(1 +

1

λ̃2
)
ñ0

2x4
. (4.2.33)

We see that this 2-point function precisely matches the j̃0 2-point function in the fermionic theory,

eq. (4.2.29), under the duality map (4.1.15). To leading order at large N ,the 2-point and 3-point

functions involving operators with spin are unchanged in the critical theory compared to the CS-

boson theory, and the agreement with the duality follows by comparing (4.2.27) and (4.2.30). The

3-point functions involving one (or more) scalars σb can be obtained from the ones in the CS-boson

theory by attaching a σb line to the every scalar operator φ̄φ, using the vertex in (4.2.3). In terms

of j̃crit.bos.
0 = σb/(4πλ), the corresponding 3-point functions are related to those of the CS-fermion

theory (4.2.31) by the duality map (4.1.15). Note that the tensor structure 〈js1js2 j̃0〉odd in (4.2.31)

corresponds to the correlators of the critical O(N) model (Wilson-Fisher), which is recovered in the

λ̃f →∞ limit of the CS-fermion model (or λ̃b → 0 limit of the critical CS-boson model).

The discussion of the critical fermion model (4.2.5) goes similarly. The auxiliary field σf becomes

a scalar primary with dimension ∆ = 1+O(1/N) in the UV, and its 2-point function can be computed

to be

〈σf (x)σf (0)〉 = N
2πλ

tan(πλ2 )

1

π2x2
. (4.2.34)

The duality with the CS-boson model can be verified by defining the operator jcrit.fer.
0 = σf/(4πλ),

which has the 2-point function

〈jcrit.fer.
0 (x)jcrit.fer.

0 (0)〉 =
N

8πλ tan(πλ2 )

1

π2x2
= Ñ(1 +

1

λ̃2
)
n0

2x2
. (4.2.35)

This matches the CS-boson 2-point function (4.2.25) under the duality map (4.1.15). Similarly, the

3-point functions involving a scalar can be seen to map to those of the CS-boson theory. The tensor

structure in (4.2.28) which breaks current conservation corresponds to the correlators of the critical

Gross-Neveu model, which is recovered in the limit λ̃f = 0 of the critical CS-fermion (or λ̃b → ∞ in
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the CS-boson model). Note that in this case there is an additional marginal parameter g6 on both

sides of the duality, as discussed earlier, and a corresponding duality map [130]. We will neglect this

coupling throughout the chapter.

4.3 Analysis based on Slightly Broken Higher-Spin Symmetry

The theories we study have a tower of single-trace primary spin-s operators js which have scaling

dimension ∆ = s+1+O(1/N) and are nearly conserved currents [85,86,118]. Following the terminology

introduced in [118], we call “quasi-boson” theory the CFT whose single trace spectrum include, in

addition to the spin-s operators, a scalar j0 with ∆ = 1 + O(1/N); and “quasi-fermion” theory the

CFT with a scalar j̃0 of dimension ∆ = 2 + O(1/N). The “regular” CS-boson theory or critical

CS-fermion theory fall in the quasi-boson class, while the regular CS-fermion or critical CS-boson fall

in the quasi-fermion class.

In [118], the quasi-bosonic and quasi-fermionic theories are defined in terms of two parameters: λ̃

and Ñ . (In the quasi-bosonic theory there is an additional parameter λ̃6 which we ignore here.) The

parameter Ñ can be defined via the normalization of the spin 2 operator (the stress-tensor) two-point

function, while λ̃ is defined via the spin 4 anomalous conservation relation:

∂ · j4 ∼
λ̃

Ñ

(
∂−j̃

MZ
0 j2 −

2

5
j̃MZ
0 ∂−j2

)
(4.3.1)

in the quasi-fermion case, and similarly in the quasi-boson case. Here ∼ denotes equality up to a

λ̃-independent numerical coefficient, and jMZ
0 denotes the scalar in the normalizations used in [118],

which differ from ours by j̃MZ
0 = j̃0/(1 + λ̃2). With λ̃ so defined, [118] derive expressions for all

two-point functions and three-point functions of single-trace primary operators js.

4.3.1 General form of current non-conservation

To derive the general expression for anomalous dimensions of spin s currents, we need an expression

for the divergence of js. As argued in [85, 86, 118] the divergence of js (for s > 0) takes the following
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form:

∂ · js ≡
∑
s1,s2

∂ · js
∣∣∣
s1,s2

+
∑

s1,s2,s3

∂ · js
∣∣∣
s1,s2,s3

(4.3.2)

=
∑
s1,s2

(
Cs1,s2,s(λ̃)

1

Ñ
[js1 ][js2 ]

)
+

∑
s1,s2,s3

(
Cs1,s2,s3,s(λ̃)

1

Ñ2
[js1 ][js2 ][js3 ]

)
, (4.3.3)

where [js] denotes js or any of its conformal descendants, and Cs1,s2,s and Cs1,s2,s3,s are numerical

coefficients that depend on s1, s2 (and s3) and also λ̃. The “double-trace” operator [js1 ][js2 ] appearing

on the right-hand side can be fixed by conformal symmetry up to the overall normalization that can

be absorbed in Cs1,s2,s, as we will work out explicitly below. Similarly, one could fix the structure

of the “triple-trace” term. However, it is easy to see that this term does not affect the anomalous

dimension of js to order 1/N or the planar 3-point functions, and we will ignore it below.

We can fix the λ̃-dependence of Cs1,s2,s(λ̃) by calculating the correlation function of both sides of

equation (4.3.3) with js1 and js2 . To leading order at large N , the resulting correlator factorizes and

we find

〈js1js2∂ · js〉 ∼
1

Ñ
Cs1,s2,s(λ̃)〈js1js1〉〈js2js2〉 . (4.3.4)

On the other hand, from the results of [118], we have, see (4.2.27), (4.2.28) and (4.2.31):

〈js1js2∂ · js〉 ∼ Ñ
λ̃

1 + λ̃2
,

〈js1j0∂ · js〉 ∼ Ñ λ̃ ,

〈js1 j̃0∂ · js〉 ∼ Ñ λ̃ ,

(4.3.5)

where ∼ means equality up to Ñ - and λ̃-independent numerical coefficients, and this result follows

from the fact that the current non-conservation can only arise from the parity violating terms in the

3-point functions (4.2.27), (4.2.28) and (4.2.31). We also know that, see eq. (4.2.25) and (4.2.29): 11

〈js1js1〉 ∼ Ñ , s1 6= 0 ,

〈j0j0〉 ∼ Ñ(1 + λ̃2) , 〈j̃0j̃0〉 ∼ Ñ(1 + λ̃2) .

(4.3.6)

11Recall that our normalization of j0 and j̃0 differ from the one used in [118], where 〈j0j0〉, 〈j̃0j̃0〉 ∼ Ñ(1 + λ̃2)−1.
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Putting everything together, we find

Cs1,s2,s(λ̃) ∼ λ̃

1 + λ̃2
=

(
λ̃+

1

λ̃

)−1

, (4.3.7)

which is valid both for s1, s2 6= 0 and for the case when either one of s1 or s2 is zero (in the case

s1 = s2 = 0, we have C0,0,s = 0). This λ̃-dependence holds both in the quasi-boson and quasi-fermion

theories.

Via radial quantization (or equivalently directly using conformal invariance in flat space), the form

(4.3.3) for the divergence of js implies that the twist, τs = ∆s − s of js takes the form, to the leading

order in 1/Ñ

τs − 1 =
∑
s1 6=0

(
Cs1,0,s(λ̃)

)2

αs1,0,s
ns1n0(1 + λ̃2)

Ñns
+

∑
s1,s2 6=0

(
Cs1,s2,s(λ̃)

)2

αs1,s2,s
ns1ns2
Ñns

(4.3.8)

in the quasi-boson theory, and a similar expression in the quasi-fermion theory, with n0 replaced

by ñ0. Here αs1,s2,s and αs1,0,s are numerical coefficients that depend on the explicit form of the

“double-trace” primaries on the right-hand side of (4.3.3), and ns, n0, ñ0 are the 2-point normalization

coefficients defined in (4.2.12), (4.2.13) and (4.2.20). Note that the triple-trace component of the RHS

of equation (4.3.3) does not contribute to the anomalous dimension at the order 1
Ñ

.

From (4.3.8), we see that to order 1/Ñ the twists take the form:

τs − 1 =
1

Ñ

(
a(F/B)
s

λ̃2

1 + λ̃2
+ b(F/B)

s

λ̃2

(1 + λ̃2)2

)
, (4.3.9)

where the value of as and bs depends on the spin s only. A priori, the values of as and bs may be

different for the quasi-Fermionic theory and the quasi-Bosonic theory, hence the superscripts F and

B. Assuming the uniqueness of the parity violating terms in the 3-point functions of non-zero spin

operators, one expects from the analysis of [118] that bBs = bFs . We will verify this explicitly from

the calculations in section 4.4. Note that the result bBs = bFs is in fact necessary for the bose/fermi

duality to work; this is because the calculation of bs, or equivalently of Cs1,s2,s with s1, s2 6= 0, is

identical in the regular CS-boson and critical CS-boson (the planar 3-point functions of non-zero spin

operators are unaffected by the Legendre transform), and similarly in regular CS-fermion and critical

CS-fermion. We will also find by our explicit calculations that aBs = aFs ; this result appears to be

more surprising, as it is not required by the bose/fermi duality.
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4.3.2 Constraining the divergence of js

The divergence of js must be a conformal primary to leading order in 1/N . A straightforward argument

for this is given in Appendix A of [118]. Another simple way of seeing this is based on conformal

representation theory [85] – at leading order in 1/N , the primary operator js has twist 1, and therefore

heads a short representation (∆, s) = (s + 1, s) of the conformal group. When 1/N corrections are

included, the primary js acquires an anomalous dimension and now heads a long representation of the

conformal group. To transform a short representation (s + 1, s) to a long representation, we require

additional states, which must transform amongst themselves as a long representation (s + 2, s − 1)

to leading order in 1/N . This long representation is headed by a primary operator, which is the

divergence of js.

We denote the contribution of double-trace operators involving js1 and js2 to the RHS of (4.3.3)

by

∂ · js
∣∣∣
s1,s2

= Cs1,s2,s[js1 ][js2 ] , (4.3.10)

where for convenience we have absorbed the factor of 1/Ñ in (4.3.3) into Cs1,s2,s. Below we explicitly

determine the unique allowed combination of descendants of js1 and js2 represented by [js1 ][js2 ] on the

LHS of (4.3.10) up to a single overall constant, Cs1,s2,s3 by demanding that ∂ · js
∣∣∣
s1,s2

is annihilated

by the generator of special conformal transformations Kµ to leading order in 1/N .

For simplicity, in this subsection we assume the null polarization vector zµ always to be δµ−, so

js(x, z) = (js)−−−... = j+++...
s . We also use (js)µ and (js)µν to denote (js)µ−−−... and (js)µν−−−...

respectively.

s1 and s2 nonzero

Let us first consider the case when both spins are nonzero: si 6= 0.

The scaling dimension of the LHS of Equation (4.3.10) is ∆ = s + 2. We match the scaling

dimension in the RHS of (4.3.10) by including p = s+ 2− (s1 + 1 + s2 + 1) = s− s1 − s2 derivatives

in [js1 ][js2 ]. A general expression with p derivatives acting on js1 and js2 , is:

p∑
n=0

cn∂
µ1 . . . ∂µnj

α1...αs1
s1 ∂ν1 . . . ∂νn−pj

β1...βs2
s2 . (4.3.11)

Here, we wrote all free indices explicitly. This expression is symmetric with respect to permutations
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αi ↔ αj , βi ↔ βj , µi ↔ µj , and νi ↔ νj .

We must now contract each term in expression (4.3.11) with dimensionless tensors. These can

come from the following lists:

List 1: η−αi , η−βi , η−µi , η−νi (4.3.12)

List 2: εαiβj−, εαiµj−, εµiβj−, εαiνj−, ενiβj−, εµiνj− (4.3.13)

List 3: ηµiµj , ηνiνj , . . . (4.3.14)

List 4: εαiβjµk , εαiβjνk , . . . (4.3.15)

Let us contract equation (4.8.23) with n1 tensors from List 1, n2 tensors from List 2, n3 tensors from

List 3 and n4 tensors from list 4.

Because the total spin of [js1 ][js2 ] must be s− 1, we require n1 + n2 = s− 1. (Recall that we take

all free indices in ∂ · js to be in the − direction, so the spin is simply the number of lower − indices.)

The total number of free indices in (4.3.11) is p + s1 + s2 = s; each tensor from List 1 removes one

free index, each tensor from List 2 or 3 removes two free indices, and each tensor from List 4 removes

3 indices, so we also require n1 + 2n2 + 2n3 + 3n4 = s. This implies n2 + 2n3 + 3n4 = 1, which then

implies n2 = 1, n1 = s− 2 (and n3 = n4 = 0).

Hence we require s − 2 tensors from List 1 and 1 tensor from List 2. Choosing the tensor from

List 2 automatically fixes which tensors from List 1 we need to use. Note that the resulting operators

always involve the ε-tensor, illustrating the fact that the breaking of current conservation in 3-point

functions arises from parity violating terms.

Contracting each of the six tensors in List 2 with equation (4.3.11) yields:

∂ · js
∣∣∣
s1,s2

=

p∑
n=0

εµν−

(
an∂

n
−j

µ
s1∂

p−n
− jνs2 + bn∂

n−1
− ∂νjµs1∂

p−n
− js2+

+ cn∂
n−1
− ∂µjs1∂

p−n
− jνs2 + dn∂

n
−j

µ
s1∂

p−n−1
− ∂νjs2

+ en∂
n
−js1∂µ∂

p−n−1
− jνs2 + fn∂

n−1
− ∂µjs1∂

p−n−1
− ∂νjs2

)
.

(4.3.16)

However the six types of terms in (4.3.16) are not linearly independent, as one can check by explicitly

writing out the sums over µ and ν. We can choose a basis of three linearly independent terms and

99



write the most general form for [js1 ][js2 ] with correct scaling dimension and spin as:

∂ · js
∣∣∣
s1,s2

=

p∑
n=0

εµν−

(
an∂

n
−j

µ
s1∂

p−n
− jνs2 + bn∂

n−1
− ∂νjµs1∂

p−n
− js2 + en∂

n
−js1∂

µ∂p−n−1
− jνs2

)
, (4.3.17)

where b0 = 0 and ep = 0. We also must require that, when we interchange the spins s1 ↔ s2,

bn ↔ −ep−n and an ↔ −ap−n .

Next we apply the constraint that the expression be a conformal primary. Acting on this expression

with K3 and K+, as illustrated in Appendix 4.7, we are able to determine an, bn and en up to one

undetermined constant Cs1,s2,s.

an = Cs1,s2,s
(−1)n+1 (s1(n− s+ s1 − s2) + s2(n+ 2s1)(−1)s+s1+s2)

(s− s1 − s2)(s+ s1 + s2)

(
s− s1 − s2

n

)(
s+ s1 + s2

n+ 2s1

)
,

bn = Cs1,s2,s(−1)n
(
s− s1 − s2 − 1

n− 1

)(
s+ s1 + s2

n+ 2s1

)
,

en = Cs1,s2,s(−1)s−s1−s2+n+1

(
s− s1 − s2 − 1

n

)(
s+ s1 + s2

n+ 2s1

)
. (4.3.18)

This formula is also valid if s1 = s2.

s2 = 0, Quasi-Fermionic

Let us next consider the contribution to the non-conservation equation from js1 and j̃0 in the quasi-

fermionic theory.

In this case, [js1 ][j̃0] requires p = s− s1 − 1 derivatives, s− 1 tensors from List 1, and no tensors

from the other lists. Hence, we have the following expression:

∂ · js
∣∣∣
s1,0

=

p∑
m=0

cm∂
m
− js1∂

p−m
− j̃0 . (4.3.19)

Now we apply the constraint that the expression be a conformal primary, as illustrated in appendix

4.7. We find that

cm =
−(m− p− 1)(m− p− 2)

m(m+ 2s1)
cm−1, (4.3.20)

which can be solved to give

cm = (−1)
m

(
s− s1

m

)(
s+ s1 − 1

m+ 2s1

)
Cs1,0̃,s. (4.3.21)
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One can check that this form agrees with the various divergences calculated explicitly in [85], as well

as those calculated in [33,84].

s2 = 0, Quasi-Bosonic

We now consider the contribution from js1 with s1 6= 0 and j0 to the divergence of js in the quasi-

bosonic theory, where the scalar primary has scaling dimension 1. Here, the analysis of section 4.3.2

applies again, but there are only three relevant tensors in List 2, of which only two are independent,

yielding:

∂ · js
∣∣∣
s1,s2

=

p∑
n=0

εµν−

(
bn∂

n−1
− ∂νjµs1∂

p−n
− j0 + fn∂

n
−j

µ
s1∂

ν∂p−n−1
− j0

)
, (4.3.22)

where p = s− s1.

Requiring that the expression is annihilated by Kδ gives:

bn = Cs1,0,s(−1)n
(
s+ s1

n+ 2s1

)(
s− s1 − 1

n− 1

)
, (4.3.23)

fn = Cs1,0,s(−1)n
s1

s+ s1

(
s+ s1

n+ 2s1

)(
s− s1 − 1

n

)
, (4.3.24)

with fp = 0 and b0 = 0. We checked that this matches the divergence of j4 calculated explicitly in [86].

4.3.3 The anomalous dimensions

We can now use the explicit form of the non-conservation equation to determine the anomalous

dimensions of the higher-spin operators to order 1/N . Using the index-free notation in terms of the

null polarization vector z, we can write the non-conservation equation as

∂µD
µ
z js(x, z) = Ks−1(x, z) , (4.3.25)

where Dµ
z is the operator defined in (1.4.2). Recall that the two-point function a spin s primary

operator of dimension ∆s is fixed by conformal invariance to be (1.4.8):

〈js(x1, z1)js(x2, z2)〉 = Ns

(
z1·x12z2·x12

x2
12

− 1
2z1 · z2

)s
(x2

12)∆s
, (4.3.26)
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where z1, z2 are two polarization vectors. Writing ∆s = s+1+γs and taking the divergence on x1 and

x2 on both sides of this equation, one may derive the following formula for the anomalous dimension,

valid to leading order in the breaking parameter [22,23]

γs = − 1

s2(s2 − 1
4 )

(z · x)2〈Ks−1(x, z)Ks−1(0, z)〉0
〈js(x, z)js(0, z)〉0

, (4.3.27)

where the subscript ‘0’ means that the correlators are computed in the “unbroken” theory (in our

case, to leading order at large N).

Let us define

K(a)
s−1 =

∑
s1

Cs1,0,s[js1 ][j0] , K̃(a)
s−1 =

∑
s1

Cs1,0̃,s[js1 ][j̃0] ,

K(b)
s−1 =

∑
s1,s2 6=0

Cs1,s2,s[js1 ][js2 ] ,

(4.3.28)

so that in the quasi-boson theory we have ∂ · js = K(a)
s−1 + K(b)

s−1, and in the quasi-fermion ∂ · js =

K̃(a)
s−1 + K(b)

s−1. Using the explicit form of these double-trace operators given in (4.3.22), (4.3.19) and

(4.3.17), and computing their two-point functions using (4.2.25) and (4.2.29),12 we find

(z · x)2〈K(a)
s−1K

(a)
s−1〉0

〈jsjs〉0
= Ñ(1 + λ̃2)

∑
s1

s3((s− 1)!)2

128π2(s2 − s2
1)(s1!)2

(Cs1,0,s)
2 ,

(z · x)2〈K̃(a)
s−1K̃

(a)
s−1〉0

〈jsjs〉0
= −Ñ(1 + λ̃2)

∑
s1

(s!)2(s− s1)

128π2s(s1!)2(s+ s1)
(Cs1,0̃,s)

2 , (4.3.29)

(z · x)2〈K(b)
s−1K

(b)
s−1〉0

〈jsjs〉0
= Ñ

∑
s1,s2 6=0

s3((s− 1)!)2(s− s1 − s2 − 1)!(s+ s1 + s2 − 1)!

64π2(s1!)2(s2!)2(s+ s1 − s2)!(s− s1 + s2)!
(Cs1,s2,s)

2 .

A direct calculation using the equations of motion, described in the next section, and the result (4.3.7),

allow us to fix the undetermined “structure constants” to be

CBs1,s2,s = −CFs1,s2,s =
1

Ñ

λ̃

1 + λ̃2
·


32i(s+s1−s2)!(s−s1+s2)!s1!s2!
(s+s1+s2−1)!(s−s1−s2−1)!s! s1 + s2 = s− 2, s− 4, . . . ,

0 otherwise

(4.3.30)

Cs1,0,s =
1

Ñ

λ̃

1 + λ̃2
·


32i(s2−s21)s1!

s! s1 = s− 2, s− 4, . . . ,

0 otherwise

(4.3.31)

12To compute the two-point functions of currents with one “open” index, one may take derivatives of (1.4.8) with
respect to the polarization vectors.
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Cs1,0̃,s =
1

Ñ

λ̃

1 + λ̃2
·


32(s+s1)s1!

(s−1)! s1 = s− 2, s− 4, . . . ,

0 otherwise

(4.3.32)

Plugging these into (4.3.29) and using the formula (4.3.27), we find that the anomalous dimensions

take the form (4.3.9), with aBs = aFs = as and bBs = bFs = bs given by

as =
∑

s1=s−2,s−4,...

32(s2 − s2
1)

π2s (4s2 − 1)
=


16(s−2)

3π2(2s−1) , s even ,

32(s2−1)
3π2(4s2−1) , s odd ,

(4.3.33)

and

bs =
∑

s1+s2=s−2,s−4,...

64(s+ s1 − s2)!(s− s1 + s2)!

π2s (4s2 − 1) (s− s1 − s2 − 1)!(s+ s1 + s2 − 1)!

=


2

3π2

(
3
∑s
n=1

1
n−1/2 + −38s4+24s3+34s2−24s−32

(4s2−1)(s2−1)

)
, s even ,

2
3π2

(
3
∑s
n=1

1
n−1/2 + −38s2+20

4s2−1

)
, s odd .

(4.3.34)

Let us note here that it is straightforward to adapt the above results to the case of O(N) gauge

group: one simply drops all the odd-spins from the sum. Doing this, we find

aO(N)
s =

16(s− 2)

3π2(2s− 1)
,

bO(N)
s =

4

π2

−2

s
2−1∑
n=1

1

n− 1
2

+
9

4

s−1∑
n=1

1

n− 1
2

− 59s4 + 18s3 − 4s2 + 54s+ 35

6(4s2 − 1)(s2 − 1)

 ,

(4.3.35)

and the anomalous dimensions take the same form as in (4.3.9), with ÑO(N) = N(1 + O(λ2)) and

λ̃O(N) = π
2λ + O(λ3). Note that b

O(N)
s vanishes for s = 2 and also for s = 4, because in the O(N)

case the divergence of j4 can only take the form (4.3.1).

4.4 Current non-conservation from classical equations of mo-

tion

4.4.1 CS-boson

The generating function Jb(x, z) of the higher-spin operators in the CS-boson theory was given in

(4.2.22). Since we will be working to leading order in 1/k, it will be sufficient to expand the generating
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function to linear order in the gauge field. We note that

(∂̂ − iÂ)nφ = ∂̂nφ− i
n−1∑
k=0

∂̂kÂ∂̂n−1−kφ+O(A2)

= ∂̂nφ− i
n−1∑
k=0

(∂̂x + ∂̂y)k∂̂n−1−k
x Â(y)φ(x)|y→x +O(A2)

= ∂̂nφ− i (∂̂x + ∂̂y)n − ∂̂nx
∂̂y

Â(y)φ(x)|y→x +O(A2) .

(4.4.1)

Since this expression involves the same power n everywhere, we can extend this formula to any function

of D̂ acting on φ:

F (∂̂ − iÂ)φ = F (∂̂)φ− iF (∂̂x + ∂̂y)− F (∂̂x)

∂̂y
Â(y)φ(x)|y→x +O(A2) . (4.4.2)

A similar result applies when a power of the covariant derivative acts on φ̄. Therefore, to linear order

in the gauge field, the generating function of the higher-spin operators is

Jb = fb(∂̂1, ∂̂2)φ̄(x1)φ(x2) + ig(∂̂1, ∂̂2, ∂̂3)φ̄(x1)Â(x3)φ(x2) ,

g(u, v, w) =
fb(u+ w, v)− fb(u, v + w)

w
, fb(u, v) = eu−v cos(2

√
uv) ,

(4.4.3)

where in the first line it is understood that after taking the derivatives all points are set to x.

To calculate the divergence of the spin s operators, we should evaluate

∂µD
µ
z Jb(x, z) ≡ ∂ · Jb . (4.4.4)

When the operator ∂µD
µ
z acts on the A-independent piece of Jb, one gets [33,84]

∂µD
µ
z fb(∂̂1, ∂̂2)φ̄(x1)φ(x2) =

[
h(∂̂1, ∂̂2)∂2

1 + h̃(∂̂1, ∂̂2)∂2
2

]
φ̄(x1)φ(x2) ,

h(u, v) = (
1

2
∂u +

u− v
2

∂2
u + v∂uv)f(u, v) ,

h̃(u, v) = (
1

2
∂v +

v − u
2

∂2
v + u∂uv)f(u, v) .

(4.4.5)
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In the interacting theory, the equations of motion to linear order in A are

∂2φ = i(∂ ·A)φ+ 2iA · ∂φ ,

∂2φ̄ = −iφ̄(∂ ·A)− 2i(∂φ̄) ·A .
(4.4.6)

Using this into (4.4.5), and combining with the term that arises when ∂µDµ
z acts on the piece of Jb

linear in A (where one can just use the free equation of motion ∂2φ = 0), one should find a gauge

invariant result. We have explicitly checked that all the terms involving Â indeed cancel out, and one

is left with terms involving only the field strength F = dA. The final result takes the form

∂ · Jb =
[
k1(∂̂1, ∂̂2, ∂̂3)∂µ1 + k2(∂̂1, ∂̂2, ∂̂3)∂µ2 + k3(∂̂1, ∂̂2, ∂̂3)∂µ3

]
φ̄(x1)(iFµρ(x3)zρ)φ(x2) , (4.4.7)

where

k1(u, v, w) =
2

w
h(u+ w, v)− 1

w

(1

2
− (v + w)∂u + v∂v + w∂w

)
g(u, v, w) ,

k2(u, v, w) = − 2

w
h̃(u, v + w)− 1

w

(1

2
+ u∂u − (u+ w)∂v + w∂w

)
g(u, v, w) , (4.4.8)

k3(u, v, w) =
1

w
(h(u+ w, v)− h̃(u, v + w))− 1

w

(1

2
+ u∂u + v∂v − (u+ v)∂w

)
g(u, v, w) .

We can now use the equation of motion for Aµ, which reads (to linear order in A)

k

4π
εµνρ(Fνρ)

i
j = (∂µφ̄j)φ

i − φ̄j∂µφi , (4.4.9)

or equivalently

(Fµρ)
i
j =

2π

k
εµρν

(
(∂ν φ̄j)φ

i − φ̄j∂νφi
)
. (4.4.10)

After plugging this into (4.4.7), we get

∂ · Jb = −2πi

k
εµνρz

ρ [k1∂
µ
1 + k2∂

µ
2 + k3(∂µ3 + ∂µ4 )] (∂ν3 − ∂ν4 )φ̄i(x1)φi(x4)φ̄j(x3)φj(x2) . (4.4.11)

Note that we had to point-split ∂3 → ∂3 + ∂4. To make contact with the analysis of the previous

section, one should express this as a sum of double-trace primaries. Note that the scalar bilocals with

derivatives acting on them can be expressed as linear combinations of the higher-spin operators and
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their derivatives. Doing this, one finds precisely the decomposition derived in the previous section

∂ · Jb = K(a) +K(b) , (4.4.12)

where K(a) ∼
∑
s1
Cs1,0,s[js1 ][j0] and K(b) ∼

∑
s1,s2

Cs1,s2,s[js1 ][js2 ] are the double-trace operators

given respectively in (4.3.22) and (4.3.17), and the Cs1,s2,s coefficients are determined to be

Cs1,s2,s = +
2πiλ

N

4(s+ s1 − s2)!(s− s2 + s1)!

(s+ s1 + s2 − 1)!(s− s1 − s2 − 1)!

s1!s2!

s!
, s1 + s2 = s− 2j , j > 0 , (4.4.13)

and

Cs1,0,s = 4
2πiλ

N

(s2 − s2
1)s1!

s!
, s1 = s− 2j , j > 0 . (4.4.14)

Extending these to all orders in λ by sending λ→ 2
π λ̃/(1 + λ̃2) and N → Ñ/2, one obtains the results

quoted in (4.3.30) and (4.3.31).

Note that from the form (4.4.11) of the divergence, it is also straightforward to compute the

anomalous dimensions by directly using Wick contractions of φ and the master formula (4.3.27). In

fact, this allows to obtain the anomalous dimensions to order λ2 and exactly in N . We find for

s = 1, 2, 3, . . .:

γs =
λ2

N

{
0, 0,

32

105
+

8

105N
,

12

35
+

4

105N
,

1504

3465
+

24

385N
,

4192

9009
+

32

693N
, . . .

}
+O(λ3) . (4.4.15)

This takes the form

γs =
π2λ2

2N
(as + bs) +

λ2

N2
γ(2)
s +O(λ3) , (4.4.16)

where as and bs are given in (4.3.33) and (4.3.34), and the coefficients γ
(2)
s at order λ2/N2 can be

found to be:

γ(2)
s =


2
(
Hs− 5

2
−H s−3

2

)
− 4(s−2)(4s2−4s+3)

3(s−1)(2s−3)(2s−1) , s even ,

2
(
Hs− 3

2
−H s

2−1

)
− 2(s−1)(8s2+8s+3)

3s(2s−1)(2s+1) , s odd ,

(4.4.17)

where Hn is the harmonic number. We note that the dimensions of even spin currents differ by a

simple fraction from that of the odd spin ones. We also observe that, unlike the order 1/N term, these

coefficients do not display logarithmic behavior at large spin.
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Critical boson

Let us now study the critical boson theory obtained by adding the (φ̄φ)2 interaction and flowing to

the IR. As reviewed earlier, the 1/N expansion of the CFT can be developed using the action (4.2.3).

In the IR, σb becomes a scalar primary with ∆ = 2 +O(1/N), and the σb equation of motion formally

removes φ̄φ from the spectrum.

It is evident that the equations of motion and hence the divergence of the higher-spin currents will

be modified due to the interaction with σb (the form of the currents themselves stay the same as in

(4.2.22)). Working to linear order in the gauge field, the equations of motion are modified to

∂2φ = i(∂ ·A)φ+ 2iA · ∂φ+
1

N
σbφ ,

∂2φ̄ = −iφ̄(∂ ·A)− 2i(∂φ̄) ·A+
1

N
σbφ̄ .

(4.4.18)

Consequently, when computing the divergence of Jb, the descendant acquires an additional term linear

in σ, and to leading order in 1/N and 1/k is given by

∂ · Jb = Kreg.CS−bos. +Kcrit.bos. ,

Kcrit.bos. =
1

N
(h(∂̂1 + ∂̂3, ∂̂2) + h̃(∂̂1, ∂̂2 + ∂̂3))φ̄(x1)φ(x2)σb(x3) ,

(4.4.19)

where h(u, v) and h̃(u, v) were defined in (4.4.5), and Kreg.CS−bos. is the descendent computed in the

previous section, given in (4.4.7). To get the final result for the divergence, one should still impose

that φ̄φ = 0 as a consequence of the equation of motion for σb. This means that we should drop the

term K(a) ∼ Cs1,0,s
∑
s1

[j0][js1 ] from Kreg.CS−bos.. Also writing Kcrit.bos. in terms of primaries and

dropping all the φ̄φ terms, one finds the final result

∂ · Jb = K̃(a) +K(b) ,

K̃(a) =
∑

s1=s−2,s−4,...

Cs1,0̃,s

s−s1−1∑
m=0

(−1)
m

(
s− s1

m

)(
s+ s1 − 1

m+ 2s1

)
∂̂mjs1 ∂̂

s−s1−1−mσb ,

Cs1,0̃,s =
2(s+ s1)s1!

(s− 1)!

1

N
.

(4.4.20)

where K(b) ∼
∑
s1,s2

Cs1,s2,s[js1 ][js2 ] remains the same as in the regular CS-boson theory of the

previous section. Note that K̃(a) has precisely the form predicted by conformal symmetry for the

quasi-fermion theory, eq. (4.3.19). Defining σb = 4πλj̃crit.bos.
0 , this result can be seen to be precisely
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related by the bose/fermi duality to the divergence in the CS-fermion theory, which we compute in

the next section.

Extending the above result to all orders in λ̃ by using the arguments in section 4.3.1, one can

deduce that the anomalous dimensions in the critical boson model coupled to Chern-Simons are

γcrit.
s =

1

Ñ

(
1

1 + λ̃2
as +

λ̃2

(1 + λ̃2)2
bs

)
. (4.4.21)

4.4.2 CS-fermion

The generating function of the higher-spin operators in the CS-fermion theory was given in (4.2.23).

Linearizing it in the gauge field, as described in the boson case above, we find

Jf = ff(∂̂1, ∂̂2)ψ̄(x1)γ̂ψ(x2) + ig(∂̂1, ∂̂2, ∂̂3)ψ̄(x1)γ̂Â(x3)ψ(x2) ,

g(u, v, w) =
ff(u+ w, v)− ff(u, v + w)

w
, ff(u, v) =

eu−v sin (2
√
uv)

2
√
uv

.
(4.4.22)

The equations of motion to linear order in the gauge field are

/∂ψ = i /Aψ , ∂µψ̄γ
µ = −iψ̄ /A ,

∂2ψ =
i

2
γµνFµνψ + i(∂ ·A)ψ + 2iA · ∂ψ ,

∂2ψ̄ =
i

2
ψ̄γµνFµν − iψ̄∂ ·A− 2i(∂µψ̄)Aµ .

(4.4.23)

We are now prepared to evaluate the divergence ∂ · Jf . The calculation will consist of two terms

essentially. The first one arises from acting with ∂µD
µ
z on the A-independent part of (4.4.22), and

which gives terms proportional to the “descendant operators” ∂µψ̄γµ, /∂ψ and ∂2ψ̄, ∂2ψ, which are

non-zero in the interacting fermion theory:

∂µD
µ
z ff(∂̂1, ∂̂2)ψ̄(x1)γ̂ψ(x2) =

[
/∂1q(∂̂1, ∂̂2) + /∂2q̃(∂̂1, ∂̂2) + γ̂∂2

1h(∂̂1, ∂̂2) + γ̂∂2
2 h̃(∂̂1, ∂̂2)

]
ψ̄(x1)ψ(x2) ,

q(u, v) =
(1

2
ff + v(∂vff − ∂uff)

)
, q̃(u, v) =

(1

2
ff + u(∂uff − ∂vff)

)
,

h(u, v) =
(3

2
∂uff +

u− v
2

∂2
uff + v∂uvff

)
, (4.4.24)

h̃(u, v) =
(3

2
∂vff +

v − u
2

∂2
vff + u∂uvff

)

The second term is the result of acting with ∂µD
µ
z on the piece of (4.4.22) proportional to A (in
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this piece, we can use the free Dirac equation of motion). To simplify the calculation, one may impose

the Â = 0 “light-cone” gauge after differentiation with respect to the zµ is carried out everywhere.

The full form of the descendant as a function of Fµν can be then reconstructed using gauge invariance.

As a consistency check, we have also performed the calculation in arbitrary gauge, and verified that

all unwanted Â terms drop out. The final result takes the form

∂ · Jf =
[
k1(∂̂1, ∂̂2, ∂̂3)∂µ1 + k2(∂̂1, ∂̂2, ∂̂3)∂µ2 + k3(∂̂1, ∂̂2, ∂̂3)∂µ3

]
ψ̄(x1)γ̂(iFµν(x3)zν)ψ(x1)

+ k4(∂̂1, ∂̂2, ∂̂3)ψ̄(x1)(iFµν(x3)γµν)γ̂ψ(x2) + k5(∂̂1, ∂̂2, ∂̂3)ψ̄(x1)(iFµν(x3)zν)γµψ(x2) ,

where we defined

k1(u, v, w) =
2

w
h(u+ w, v)− 1

w

(3

2
− (v + w)∂u + v∂v + w∂w

)
g(u, v, w) ,

k2(u, v, w) = − 2

w
h̃(u, v + w)− 1

w

(3

2
+ u∂u − (u+ w)∂v + w∂w

)
g(u, v, w) ,

k3(u, v, w) =
1

w
(h(u+ w, v)− h̃(u, v + w))− 1

w

(3

2
+ u∂u + v∂v − (u+ v)∂w

)
g(u, v, w)

k4(u, v, w) =
1

2
(h(u+ w, v)− h̃(u, v + w)) ,

k5(u, v, w) =
1

w
(q(u+ w, v)− q̃(u, v + w)) + 2h̃(u, v + w) +

u+ v + w

w
g(u, v, w) .

(4.4.25)

As a check, note that for s = 2 we are left with ψ̄Fµνz
µγνψ, which vanishes upon using the equations

of motion.

In 3d Euclidean space, the γ matrices are just Pauli matrices, and we have the following identities

(ε123 = 1):

γµγν = δµν + iεµνργ
ρ , (4.4.26)

γµνγρ = iεµνρ + γµδνρ − γνδµρ , (4.4.27)

γµγνγρ = iεµνρ − δµργν + δνργµ + δµνγρ . (4.4.28)

Using these, we can write

∂ · Jf = [k1∂
µ
1 + k2∂

µ
2 + k3∂

µ
3 ] ψ̄(γ · z)(iFµνzν)ψ − k4ψ̄F

µνεµνρz
ρψ + (k5 + 2k4)ψ̄(iFµνz

ν)γµψ .
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Upon using the gauge field equations of motion

(Fµν)ij =
2π

k
εµνρψ̄jγ

ρψi , (4.4.29)

we find

k

2π
∂ · Jf = [k1∂

µ
1 + k2∂

µ
2 + k3(∂µ3 + ∂µ4 )] ψ̄(x1)γ̂iεµνλz

ν(ψ̄(x3)γλψ(x4))ψ(x2)

− 2k4ψ̄(x1)(ψ̄(x3)γ̂ψ(x4))ψ(x1) + (k5 + 2k4)ψ̄(x1)iεµνρz
νγµ(ψ̄(x3)γρψ(x4))ψ(x2) .

(4.4.30)

Note that ∂3 will have to be “point-split” from now on: ∂3 → ∂3 + ∂4 (and similarly when ∂̂3 appears

in k1 . . . , k5). To write the result (4.4.30) as a sum of double-trace primaries, we can use the Fierz

identity13

ψψ̄ = −1

2
(ψ̄ψ)− 1

2
(ψ̄γµψ)γµ . (4.4.31)

After using this identity, we can write the descendant as:

k

2π
∂ · Jf = iεµνρz

ρ
[
k4ψ̄i(x1)γµψ

i(x4)ψ̄j(x3)γνψ
j(x2)

+
1

2
(k1∂

µ
1 + k2∂

µ
2 + k3(∂µ3 + ∂µ4 ))(ψ̄i(x1)γ̂ψi(x4)ψ̄j(x3)γνψ

j(x2) + ψ̄i(x1)γνψ
i(x4)ψ̄j(x3)γ̂ψj(x2))

]
+ (

1

2
(k1∂̂1 + k2∂̂2 + k3(∂̂3 + ∂̂4) + k5 + 3k4)ψ̄i(x1)ψi(x4)ψ̄j(x3)γ̂ψj(x2)

− (
1

2
(k1∂̂1 + k2∂̂2 + k3(∂̂3 + ∂̂4) + k5 + k4)ψ̄i(x1)γ̂ψi(x4)ψ̄j(x3)ψj(x2) .

(4.4.32)

It is now convenient to use the following identities, which follow from the free Dirac equation:

iεµνρ∂2,4µγν = −∂2,4ρ , (4.4.33)

iεµνρ∂1,3µγν = +∂1,3ρ , (4.4.34)

where the subscripts indicate the field we act on, and the sign difference is due to the difference of

Dirac equation for ψ and ψ̄. We also have:

iεµνρzρ∂1,3µγ̂ = iεµνρzργµ∂̂1,3 + zν ∂̂1,3 , (4.4.35)

iεµνρzρ∂2,4µγ̂ = iεµνρzργµ∂̂2,4 − zν ∂̂2,4 . (4.4.36)

13Spinor indices are uncontracted on the left-hand side, so the right-hand side is a 2 by 2 matrix.
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Using the above identities, we can put (4.4.32) into the form

∂ · Jf =
2π

k
iεµνρz

ρ
(
k4 +

1

2
(k1∂̂1 + k3∂̂4 − k2∂̂2 − k3∂̂3)

)
ψ̄iγµψ

iψ̄jγνψ
j

+
2π

k
(
1

2
(k1∂̂1 + k2∂̂2 + k3∂̂3 + k3∂̂4) + k5 + 3k4 + k1∂̂1 − k3∂̂4)ψ̄iψ

iψ̄j γ̂ψ
j

+
2π

k
(−1

2
(k1∂̂1 + k2∂̂2 + k3∂̂3 + k3∂̂4)− k5 − k4 + k3∂̂3 − k2∂̂2)ψ̄iγ̂ψ

iψ̄jψ
j .

(4.4.37)

To make contact with the decomposition into primaries, it is convenient to define the following

object:

J̃ (s)
µ = iε ρ

µν zνj(s)
ρ , (4.4.38)

where on the right-hand side j
(s)
ρ denotes the spin s current with one free index (and all remaining

indices contracted with the null polarization vector). Using the explicit form of the currents (4.2.17),

one can show that

J̃ (s)
µ = fs(∂̂1, ∂̂2)ψ̄(x1)γµνz

νψ(x2) + f̃s(∂̂1, ∂̂2)zµψ̄(x1)ψ(x2) , (4.4.39)

where fs(u, v) is the spin-s part of the generating function in (4.2.17), and f̃s(u, v) is given by:

f̃s(u, v) =
1

s

2uv(∂ufs(u, v)− ∂vfs(u, v)) + (s− 1)(u− v)fs(u, v)

u+ v
. (4.4.40)

The divergence of J̃s notably only has the trivial tensor structure:

∂µJ̃ (s)
µ = ((v − u)fs + (u+ v)f̃s)ψ̄ψ . (4.4.41)

Then we see that the second and third line of (4.4.37) are guaranteed to decompose into products of

∂̂-derivatives of the spin-s currents and ∂̂-derivatives of the scalar operator j̃0 = ψ̄ψ or of the divergence

∂µJ̃
(s)
µ . Noting that ∂µJ̃

(s)
µ = iεµνρzρ∂νj

(s)
µ , we see that the second and third line of (4.4.37) produce

precisely the terms that arise in the decomposition (4.3.17) and (4.3.19). To analyze the terms in the

first line of (4.4.37), it is convenient to use explicit light-cone coordinates with zµ = δµ−. Then one

of the γ-matrices becomes γ− = γ̂ and the other γ3. Rewriting γ3 = iγ−+, we see from (4.4.39) that

the factor ψ̄γ−+ψ has the structure of J̃
(s)
− ∼ ε−+ρj

ρ
(s), minus the “scalar-like” term in (4.4.39), that
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will give rise to terms of the same form as the second and third line of (4.4.37). The end result of the

analysis is that (4.4.37) precisely takes the form predicted in section 3:

∂ · Jf = K̃(a) +K(b) ,

K̃(a) =
∑
s1

Cs1,0̃,s[js1 ][j̃0] , K(b) =
∑
s1,s2

Cs1,s2,s[js1 ][js2 ] ,
(4.4.42)

where the double-trace operators [js1 ][j̃0] and [js1 ][js2 ] are given respectively in (4.3.19) and (4.3.17),

and the overall Cs1,s2,s coefficients are fixed by our explicit calculation to be

Cs1,s2,s = −2πiλ

N

4(s+ s1 − s2)!(s− s2 + s1)!

(s+ s1 + s2 − 1)!(s− s1 − s2 − 1)!

s1!s2!

s!
, s1 + s2 = s− 2j , j > 0 (4.4.43)

and

Cs1,0̃,s =
2πλ

N

4(s+ s1)s1!

(s− 1)!
, s1 = s− 2j , j > 0 . (4.4.44)

Note that Cs1,s2,s is the same as for the CS-boson theory (up to the sign), as required by the bose/fermi

duality. The result to all orders in λ is obtained using (4.3.7), and was given in (4.3.30) and (4.3.32).

The form (4.4.30) (or (4.4.37)) of the divergence can also be used directly to compute the anomalous

dimensions using the master formula (4.3.27) and the free-fermion propagators. This way we can

extract the anomalous dimension to order λ2 and exactly in N , and we find

γs =
λ2

N

{
0, 0,

32

105
+

8

105N
,

12

35
+

4

105N
,

1504

3465
+

24

385N
,

4192

9009
+

32

693N
, . . .

}
+O(λ3) . (4.4.45)

Remarkably, this is identical to the (non-critical) CS-scalar result (4.4.15), including the 1/N2 term

(4.4.17). Note that setting N = 1 in these expressions, we obtain the anomalous dimensions in the

U(1)k CS-fermion theory to order 1/k2.

Critical fermion

Let us now study the “critical” fermionic theory where we add the (ψ̄ψ)2 interaction in addition to the

Chern-Simons gauge field. At least at large N , the theory has a UV fixed point whose 1/N expansion

can be developed using the action (4.2.5). At the UV fixed point, σf becomes a scalar primary with

∆ = 1 +O(1/N), and the ψ̄ψ operator is formally removed by the σf equation of motion.

It is evident that the equations of motion for ψ̄ and ψ are modified by terms involving the σf field.
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Omitting terms which are quadratic in the gauge field or σf , the equations of motion are

/∂ψ = i /Aψ − 1

N
σψ , ∂µψ̄γ

µ = −iψ̄ /A+
1

N
σψ̄ ,

∂2ψ =
i

2
γµνFµνψ + i(∂ ·A)ψ + 2iA · ∂ψ − 1

N
(∂µσ)γµψ ,

∂2ψ̄ =
i

2
ψ̄γµνFµν − iψ̄∂ ·A− 2i(∂µψ̄)Aµ +

1

N
ψ̄(/∂σ) .

(4.4.46)

The calculation of the divergence then picks up an extra term compared to the “regular” CS-fermion

theory:

∂ · Jf = Kreg.CS−fer. +Kcrit.fer. ,

Kcrit.fer. =
1

N

[
(q(∂̂1 + ∂̂3, ∂̂2)− q̃(∂̂1, ∂̂2 + ∂̂3) + h(∂̂1 + ∂̂3, ∂̂2)− h̃(∂̂1, ∂̂2 + ∂̂3)ψ̄(x1)ψ(x2)σ(x3)

+ (h(∂̂1 + ∂̂3, ∂̂2) + h̃(∂̂1, ∂̂2 + ∂̂3))∂µ3 ψ̄(x1)γµνz
νψ(x2)σ(x3)

]
,

(4.4.47)

where q(u, v), q̃(u, v), h(u, v) and h̃(u, v) were defined in (4.4.25), and Kreg.CS−fer. is the descendent

computed in the previous section, given in (4.4.30). After expressing the right-hand side in terms

of double-trace primaries, one should impose the condition ψ̄ψ = 0. This amounts to dropping

K̃(a) ∼
∑
s1
Cs1,0̃,s[j̃0][js1 ] from Kreg.CS−fer., and one gets the final result (after also dropping the ψ̄ψ

terms which arise when writing Kcrit.fer. in terms of primaries):

∂ · Jf = K(a) +K(b) , (4.4.48)

where K(b) ∼
∑
s1,s2

Cs1,s2,s[js1 ][js2 ] remains the same as in the regular CS-fermion theory of the

previous section, and K(a) ∼
∑
s1
Cs1,0,s[js1 ][σf ] coincides with the quasi-bosonic result in eq. (4.3.22),

with j0 replaced by σf , and with the undetermined constants found to be

Cs1,0,s =
2i

N

(s2 − s2
1)s1!

s!
. (4.4.49)

Note that, redefining σf = 4πλjcrit.fer.
0 , this result correctly maps to the divergence in the regular

CS-scalar theory, eq. (4.4.12)-(4.4.14).
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4.5 Direct Feynman diagram computation

In this section, we evaluate the coefficients as and bs by a direct diagrammatic calculation of the

anomalous dimensions. aFs can be determined by a perturbative calculation in the critical bosonic

theory (at λb = 0), aBs can be determined by a perturbative calculation in the critical fermionic theory

(at λf = 0). Once as is known, then bs (which must be the same for bosonic and fermionic theories)

can be obtained by a two-loop calculation in the non-critical fermionic theory.

In a U(Nf )kf Chern-Simons theory with fundamental matter, with kf defined via a dimensional

reduction regularization scheme (see [85] and [113,130]), λf =
Nf
kf

and Nf are related to λ̃, Ñ of [118]

via:

Ñ = 2Nb
sin(πλb)

πλb
= 2Nf

sin(πλf )

πλf
, (4.5.1)

λ̃ = tan(πλf/2) = − cot(πλb/2) . (4.5.2)

This implies:

τfs − 1 =
1

Nf

(
πλf

4

)
tan(πλf/2)

(
aFs + bFs cos2(πλf/2)

)
, (4.5.3)

=
1

Nf

π2

8

(
aFs + bFs

)
λ2
f +O(λ4

f ) (4.5.4)

for the two-loop fermionic theory, and

τ cbs − 1 =
1

2Nb
aFs (4.5.5)

for the critical bosonic theory. Identical results hold for the critical fermionic and two-loop bosonic

theories.

In section 4.5.1, we include a calculation of aBs in the critical fermionic theory, which also appeared

earlier in [87], and in section 4.5.2 we include a two-loop calculation of the anomalous dimension in

the non-critical fermionic theory to determine bs.

Perturbative calculations of the 1/N anomalous dimension for all the higher-spin currents in the

critical bosonic theory have been obtained earlier in [173] (see also [33,84]), so we do not include them

here.
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Figure 4.2: The fermion self-energy correction in the critical fermionic theory.

We calculate the anomalous dimension of js with null polarization vector z for s ≥ 1. The free

vertex for a spin s current with s ≥ 1, in momentum space can be written as:

V 0
s (q, p) = γµzµfs(i(q − p) · z, ip · z) , (4.5.6)

V 0
s (0, p) = /z

4s

2s!
(−ip · z)s−1 (4.5.7)

= vs (p · z)s−1/z (4.5.8)

where fs is determined from the generating function given in equation (4.2.15). The anomalous

dimension, δs = τs − 1, of js is related to the logarithmic divergence of the corrected vertex V ′(q, p)

via V ′s (0, p) = −δsV 0
s (0, p) log Λ.

4.5.1 Critical fermionic theory

We now calculate the 1/N anomalous dimension for all the higher-spin currents in the critical fermionic

theory. Our conventions are those of [130].

The σ propagator is:

〈σ(q)σ(−p)〉 = G(q)δ3(p− q)(2π)3 =
G0

|q|
δ3(p− q)(2π)3 , (4.5.9)

where G0 = 8/N .

There are essentially three different diagrams which contribute to the 1/N logarithmic divergence

of the corrected vertex V ′s , depicted in Figures 4.2, 4.3 and 4.4.

The fermion self-energy is shown in Figure 4.2. The logarithmic divergence of the self energy is:

∫
1

i/p
G(q − p) d3p

(2π)3
= − G0

6π2
i/q log Λ , (4.5.10)

which leads to a contribution of G0

6π2 to the anomalous dimension.

Another correction to the vertex is shown in Figure 4.3. The contribution to the corrected vertex
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Figure 4.3: A vertex correction in the critical fermionic theory.

Figure 4.4: These two diagrams provide a third correction to the vertex in the critical fermionic theory
when s is even.

V ′s from this diagram is:

V̂ ′(2)
s (0, p) =

∫
d3k

(2π)3
G(k)

1

−i(−/p− /k)
γµzµfs(i(−p− k) · z, i(p+ k) · z) 1

i(/p+ /k)
(4.5.11)

= ns
G0

π2
log Λ γµzµfs(−ip · z, ip · z)

=

(
ns
G0

π2
log Λ

)
V 0
s (0, p) , (4.5.12)

where

ns =
1

(4s+ 2)(2s− 1)
(4.5.13)

The two diagrams in Figure 4.4 contribute equally to the corrected vertex. Their sum is given by

V ′(3)
s (0, p) =

∫
d3q

(2π)3
G(q)(As(q) +As(−q))G(q)

1

i/p− i/q
. (4.5.14)

with

As(q) = −Ntr

∫
d3p

(2π)3

1

i/p
V0(0, p)

1

i/p

1

i/p− i/q
. (4.5.15)

We evaluate

A(q) = −vs
(

s

2s− 1

)
i

(2s)!

4s+1s!s!

(q · zs

q
, (4.5.16)

for even s and A(q) = 0 for odd s.
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We find the contribution to the logarithmic divergence from diagram 3 for s even is

V ′(3)
s (0, p) = 2

G2
0

16π2

(
s

(2s− 1)(2s+ 1)

)
V 0
s (0, p) log Λ, (4.5.17)

and V
′(3)
s (0, p) = 0 for s odd.

Summing all three contributions, the overall logarithmic divergence of the corrected vertex is:

V̂ ′s =
s− 2

6s− 3

8

Nπ2
(− log Λ)V̂s, for s even, s > 0. (4.5.18)

V̂ ′s =

(
2(s2 − 1)

3(4s2 − 1)

)
8

Nπ2
(− log Λ)V̂s, for s odd. (4.5.19)

and the anomalous dimension of the spin s current, with s > 0 is given by

τ critical fermionic
s − 1 =


s−2
6s−3

8
π2

1
N , s even ,

2(s2−1)
3(4s2−1)

8
π2

1
N , s odd .

(4.5.20)

A similar calculation shows that the anomalous dimension of the scalar primary σ is given by − 16
3π2

1
N ,

so the above formula does not apply for s = 0.

4.5.2 Two-loop Chern-Simons fermionic theory

Our calculation of two-loop anomalous dimensions closely follows [85].

The higher-spin currents in the interacting, non-critical, fermionic theory are the same as those

in the free fermionic theory with all derivatives promoted to covariant derivatives. We calculate

anomalous dimensions of j+++...
(s) with all upper + indices, in light-cone gauge, A+ = 0. In this gauge,

the generating function for j+++...
s is the same as in the free theory, and the vertex contains no factors

of Aµ.

In light cone gauge the gauge propagator 〈Aaµ(q)Abν(−p)〉 = (2π)3δ(q − p)Dµν(q)δab is given by:

D+3(q) = −D3+(q) =
4πi

k

1

q−
. (4.5.21)
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Figure 4.5: The two-loop fermion self-energy correction.

Figure 4.6: A two-loop vertex correction.

The order λ2 correction to the gauge field propagator at 1/N is:

G33 G3+

G+3 G++

 =
2π2λ2

N2
q2
+

1

qq4
s

−q2
− q3q−

q3q− q2
s

 (4.5.22)

Again, there are three diagrams that contribute, depicted in Figures 4.5, 4.6 and 4.7.

The contribution of the two loop 1/N self-energy of the fermion to the corrected vertex is given by

Figure 4.5. Its contribution to the anomalous dimension can be found a two-point function calculation,

we find its contribution to the logarithmic divergence of the corrected vertex to be:

V ′(1)
s = −11

24

λ2

N
(− log Λ)V 0

s . (4.5.23)

The second diagram contributing to the corrected vertex is shown in Figure 4.6 and is given by

N

2

∫
d3q

(2π)3

(
Gµν(q)γµ

1

i(/p+ /q)
vsγ−(p− + q−)s−1 1

i(/p+ /q)
γν
)
. (4.5.24)

The contribution to the anomalous dimension can be evaluated via:

V ′(2)
s = V 0

s

N

2

1

2
Tr

(
γ−
∫

d3q

(2π)3

(
Gµν(q)γµ

1

i(/p+ /q)
γ−(p− + q−)s−1 1

i(/p+ /q)
γν
))

.(4.5.25)

The logarithmic divergence of the integral is

V ′(2)
s =

−1

4

λ2

N
ps−1
− vsγ− log Λ

(
− 1

2(4s2 − 1)
+ g(s)

)
, (4.5.26)
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Figure 4.7: These two diagrams contribute equally to the two-loop anomalous dimension when s is
even.

where, g(s) is

g(s) = γ − ψ(s) + 2ψ(2s) =

s∑
n=1

1

n− 1/2
. (4.5.27)

Here, ψ(s) is the digamma function. Notice that g(s) ∼ log s for s large.

The last contribution to the corrected vertex is the sum of two diagrams shown in Figure 4.7. Here

we evaluate the sum of these diagrams.

The sum of the diagrams is given by:

V ′(3)
s =

1

2
tr

(
γ−
(
−N

2

)∫
d3q

(2π)3
γµ

1

i(/p− /q)
γνDµα(q)Dβν(q)Cαβ(q)

)
, (4.5.28)

where

Cµν(q) = vs

∫
d3p

(2π)3
tr

(
1

i(/p− /q)
γµ

1

i/p
γ−p

s−1
−

1

i/p
γν
)

(4.5.29)

Evaluating this carefully, we find

V ′(3)
s (0, p) =


(
− 2s2+1

4s4−5s2+1

)
(λ2/N)(− log Λ)V 0

s (0, p) , s even ,

0 , s odd.

(4.5.30)

The anomalous dimension of the spin s current gets contributions from only the first two diagrams

for s odd and is:

τs − 1 =
−11

24

λ2

N
+

1

4

(
−1

2(4s2 − 1)
+ g(s)

)
λ2

N

=

(
−11s2 + 2

6(4s2 − 1)
+

1

4
g(s)

)
λ2

N
.
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The anomalous dimension for even spin currents is:

τs − 1 =
−11

24

λ2

N
+

1

4

(
−1

2(4s2 − 1)
+ g(s)

)
λ2

N
− 2s2 + 1

4s4 − 5s2 + 1

λ2

N

=

(
−11s4 + s2 − 8

6 (4s4 − 5s2 + 1)
+

1

4
g(s)

)
λ2

N
. (4.5.31)

These anomalous dimensions give rise to the values of as and bs quoted above.

We note that, via a similar calculation, we find that the two-loop anomalous dimension14 of the

scalar j̃0 is

τ0̃ − 2 = −4

3

λ2

N
. (4.5.32)

which happens to agree with equation (4.5.31) when s→ 0.

4.6 Constraining the higher-spin symmetry-breaking three-

point functions

In this section, we use our results for the divergence of js from sections 4.3.2 and 4.4 to determine the

conformally-invariant, non-conserved parity odd three-point functions

〈js1(x1, z1)js2(x2, z2)js3(x3, z3)〉.

Our analysis in this section uses the results and notation of [174], which we briefly review in appendix

4.8, in which conformally invariant three-point functions are expressed in terms of the structures Pi,

Qi and Si.

As noted in [174], and in subsequent works [15, 118], there exist exactly three conformally invari-

ant conserved structures for 〈js1(x1, z1)js2(x2, z2)js3(x3, z3)〉 when conservation with respect to all

three currents is imposed. These are the free fermion correlation function, the free boson correlation

function, and a parity-odd result, unique to three dimensions.

In [174], based on numerical examples, it was conjectured that the exactly conserved parity odd

form exists only when the three spins satisfy the triangle inequality, which takes the form s3 ≤ s1 +s2,

if we assume s3 is the largest of the three spins. Below, we prove this result for arbitrary spins.

14We thank Aaron Hui for discussions regarding this calculation.
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When the triangle inequality is violated, i.e., s3 > s1+s2, a parity-violating form of the three-point

function arises in Chern-Simons vector models [118] that is conserved with respect to the first two

currents only. Requiring the divergence of js3 to be a conformal primary, we are able to uniquely

determine this form; and using the results of the classical divergence calculation, also its correct

normalization.

In subsection 4.6.1 we present recurrence relations that can be easily solved numerically for the

parity odd three-point functions of a scalar operator and two other operators of nonzero spin for

correlation functions involving the quasi-fermionic scalar (j̃0) or the quasi-bosonic scalar j0.

For all spins non-zero, we are able to derive recurrence relations which are valid in a particular limit

(the light-like OPE limit of [15]) for arbitrary spins. We are also able to explicitly show that the parity-

odd three-point functions are uniquely determined by the divergence of js3 if the triangle inequality

is violated, which implies that, if js3 is exactly conserved, the parity-odd three-point functions must

vanish outside the triangle inequality.

In appendix 4.9, we present some explicit non-conserved parity-odd three-point functions for small

spins.

4.6.1 Three-point functions involving a scalar primary

When one of the spins, which we take to be s2, is zero, it is possible to explicitly determine recurrence

relations for the three-point functions.

Quasi-fermionic theory

The most general “parity-odd”15 three-point function involving a parity-odd, twist-two scalar j̃0 al-

lowed by conformal invariance is:

〈js1(x1, z1)j̃0js3(x3, z3)〉 =
1

|x12|2|x23|2
s1∑
a=0

c̃aQ
a
1(P 2

2 )s1−aQs3−s1+a
3 , (4.6.1)

where the c̃a are undetermined coefficients.

15Recall that, by “parity-odd”, here we mean parity different from the free theory, so that the three-point function
must be multiplied by an odd power of λ when it arises in a Chern-Simons vector model. Three-point functions involving
j̃0 in the theory of free fermions involve an epsilon tensor, and hence the Si’s, and are in this case considered to be
“parity-even”.
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The correlation function is not conserved with respect to x3. Using the results of section 4.3.2 for

∂ · js
∣∣∣
s1,0̃

, we can determine:

〈js1(x1)j̃0(x2)∂ · js(x3)〉 =

p∑
m=0

cm∂
m
− 〈js1(x1)js1(x3)〉∂p−m− 〈j0(x2)j0(x3)〉 , (4.6.2)

which implies,

∂µ(3)D
(3)
µ 〈js1j0̃js3〉 =

(−1)s3−s1−1

|x23|4|x31|2
Qs3−s1−1

3 P 2s1
2

(s3 − s1)(s3 + s1 − 1)!

22s1(2s1)!
Cs1,0,s3ns1n0̃(1 + λ̃2)Ñ2

=
d̃0

|x23|4|x31|2
Qs3−s1−1

3 P 2s1
2 .

(4.6.3)

Explicitly evaluating the divergence of Equation (4.6.1) and inserting into equation (4.6.3) yields

a recurrence relation for the c̃a:

c̃a−1

(
4a2 + a(−6s1 + 2s3 − 7) + 2s1(s1 + 2)− 3s3 + 3

)
− c̃a2a(a− s1 + s3) + c̃a−2(a− s1 − 2)(−2a+ 2s1 + 3) = 0 ,

(4.6.4)

which is valid for 2 ≤ a ≤ s1, along with the following boundary terms:

c̃s1(s1(2s3 − 1)− s3)− c̃s1−1 = 0 (4.6.5)

(s3 − s1)(c̃0(2(s1 − 1)s1 − s3) + 2c̃1(s1 − s3 − 1)) = d̃0 . (4.6.6)

This recurrence relation (s1 equations in s1 unknowns) has a unique solution, which is proportional

to Cs1,0,s3 . The correlation function therefore necessarily vanishes if js3 is conserved. It appears to

also automatically satisfy conservation with respect to the first current. In Appendix 4.9 we present

a few solutions to this recurrence relation explicitly.

The reason we are able to solve for the correlation function uniquely is that the number of con-

formally invariant structures in equation (4.6.1) is independent of the third spin. So, imposing a

constraint on the divergence with respect to s3 gives us s1 equations in s1 unknowns, and hence

uniquely determines the correlation function.
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Quasi-bosonic theory

We can write the most general conformally invariant parity-odd correlation function involving a twist-

one scalar j0 as:

〈js1(x1, z1)j0(x2)js3(x3, z3)〉 =
1

|x12||x23||x31|

s1−1∑
a=0

c̃aQ
a
1(P 2

2 )s1−a−1Qs3−s1+a
3 S2 , (4.6.7)

where the c̃a are undetermined coefficients.

From the constraint that the divergence of js3 be a conformal primary, we have from section 4.3.2:

∂µ(3)D
(3)
µ 〈js1j0js3〉 = 2pfn

(2s1 + n)!(p− n)!

(2s1)!
ns1n0(1 + λ̃2)Ñ2 (εµν−x

µ
13x

ν
23)

(x+
13)2s1−1+n(x+

23)p−n−1(x2
23)n−p−1(x2

31)−2s1−n−1

=
|x12|

|x23|3|x31|3
d̃0Q

s3−s1−1
3 P 2s1−2

2 S2 ,

(4.6.8)

where d̃0 is given by

d̃0 = (−1)s3−s1+1(1 + λ̃2)
ns1n0Ñ

2Cs1,0,s3(s3 + s1 − 1)!

22s1−1(2s1)!
s1. (4.6.9)

Using equation (4.6.7), the equation (4.6.8) translates into a recurrence relation for c̃a.

c̃a
(
4a2 + a(−6s1 + 2s3 + 3) + 2(s1 − 1)s1 + s3 + 1

)
− c̃a−1(2(a− 1)− 2s1 + 1)(a− s1)− 2(a+ 1)c̃a+1(a− s1 + s3 + 1) = 0 ,

(4.6.10)

which is valid for a = 1 to s1 − 2 along with the boundary terms:

c̃0(s3 − s1)(2(s1 − 1)s1 + s3 + 1)− 2c̃1(s3 − s1)(−s1 + s3 + 1) = d̃0 (4.6.11)

cs1−1(s1(2s3 − 1)− s3 + 2)− 3cs1−2 = 0 . (4.6.12)

This has a unique solution (s1 − 1 equations in s1 − 1 unknowns), which is proportional to Cs1,0,s3 .

The correlation function necessarily vanishes if js3 is conserved. A few solutions to this recurrence

relation are given in Appendix 4.9.
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4.6.2 Three-point functions involving nonzero spins

Let us briefly consider correlation functions involving all nonzero spins. While it is difficult to say

much about these in full generality, following [15], we work in the “light-like OPE” limit, which is

a constraint on x12 and z1 and z2 that commutes with the operation of taking the divergence with

respect to x3. In this limit, P3 = 0 and S3 = 0; which we shall use frequently in all the derivations

below. One way of taking this limit is to fix the first two polarization tensors to be zµ1 = zµ2 = δµ− and

set x+
12 = 0.

In the light-like OPE limit, conformal invariance restricts the parity-odd three-point function to

be of the form:

〈js1(x1, z1)js2(x2, z2)js3(x3, z3)〉 =
1

|x12||x23||x31|
fs1,s2,s3(Pi, Qi, Si) (4.6.13)

where

fs1,s2,s3 =

min(s3−s1−1,s2−1)∑
n=0

ãnQ
s2−n−1
2 P 2n

1 Qs3−s1−n−1
3 P 2s1

2 S1

+

min(s1+s2−s3,s1−1)∑
m=0

b̃mQ
m
1 Q

s1+s2−s3−m
2 P

2(s3−s1+m)
1 P

2(s1−m−1)
2 S2

+

s2∑
n=max(0,s1+s2−s3)

c̃nQ
n
2Q

s3−s1−s2+n
3 P

2(s2−n)
1 P

2(s1−1)
2 S2

+

min(s3−s2−1,s1−1)∑
n=0

d̃nQ
s1−n−1
1 P 2n

2 Qs3−s2−1−n
3 P 2s2

1 S2.

(4.6.14)

Here we used the constraints (which simplify in the limit P3 = 0 and S3 = 0)

Q1Q2Q3 = Q1P
2
1 +Q2P

2
2 , (4.6.15)

Q1S1 = Q2S2 , (4.6.16)

to write the function f in a unique way by eliminating all occurrences of Q1Q2Q3 and Q1S1, so each

term is independent, and all powers are positive.

Note that the range of the sums, which was fixed by requiring all exponents to be positive, depends

nontrivially on the spins. Let us assume s3 is the largest spin and s3 ≥ s1 +s2. Then the total number

of undetermined coefficients in (4.6.14) is 2s2 + s1 − 1, which is independent of s3.
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When we take the divergence with respect to x3 we obtain an expression which is again of the

form (4.6.14) but with s3 → s′3 = s3 − 1. However, the number of allowed conformal structures in

equation (4.6.14) is independent of s3 outside the triangle inequality. This means that, outside the

triangle inequality, imposing a constraint on the divergence with respect to x3 gives us 2s2 + s1 − 1

equations in 2s2 + s1 − 1 unknowns. Therefore, we expect that exactly conserved parity-odd three-

point functions vanish outside the triangle inequality, at least in the light-like OPE limit. (Inside

the triangle inequality, the number of independent terms in equation (4.6.14) does depend on s3 so

imposing a constraint on conservation with respect to x3 does not uniquely determine the three-point

function.)

When js3 is not conserved, the results for the divergence ∂ · js3
∣∣∣
s1,s2

in section 4.3.2 imply the

following:

〈js1(x1)js2(x2)∂ · js3(x3)〉 (4.6.17)

= −ns1ns2Ñ2Cs1,s2,s32p
(s3 + s1 + s2 − 1)!

p(2s1)!(2s2)!
εµν−x

µ
13x

ν
23

× (x+
23)2s2−1

x4s2+2
23

(x+
13)2s1−1

x4s1+2
13

(
x+

23

x2
23

− x+
13

x2
13

)p−1(
x+

23

x2
23

A− x+
13

x2
13

B

)
,

where, p = s3 − s1 − s2, A = s1(s1 − s3 − s2) + 2s1s2(−1)s3+s1+s2 and B = −2s1s2 + s2(s3 + s1 −

s2)(−1)s3+s1+s2 , which can be written as,

〈js1(x1)js2(x2)∂ · js3(x3)〉 = (−1)s3−s2−s1
ns1ns2Ñ

2Cs1,s2,s3(s3 + s1 + s2 − 1)!

22s1+2s2−1(s3 − s1 − s2)(2s1)!(2s2)!

|x12|
|x31|3|x23|3

×
(
AS2P

2s2
1 P 2s1−2

2 Qs3−s2−s1−1
3 +BS1P

2s1
2 P 2s2−2

1 Qs3−s2−s1−1
3

)
, (4.6.18)

in the light-like limit. (If s1 = s2, this equation has to be multiplied by a factor of 2.) This equation

translates into a system of linear equations for the various coefficients in equation (4.6.14). This

system of equations appears complicated and difficult to solve in general, though one can obtain

solutions for particular spins. In Appendix 4.8, we change variables to obtain an equivalent, but

simpler recurrence relation. Using the new variables, we also prove that exactly-conserved parity-odd

three-point functions vanish when s3 > s1 + s2 even outside the light-like limit. We also present a list

of some non-conserved parity-odd three point functions with non-zero spins in Appendix 4.9.
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4.7 Appendix: Constraining the divergence of js

To constrain the double-trace operators that can appear on the right hand side of the non-conservation

equation by requiring the divergence to be a conformal primary, we use the following commutation

relations from the conformal algebra:

[Mρσ, Pµ] = −i (ηµσP ρ − ηµρPσ) , (4.7.1)

[Kν , Pµ] = 2i (ηµνD +Mµν) , (4.7.2)

[Kν , jρσs ] = 0 , (4.7.3)

[Mρσ, jµs ] = −i (ηµσjρs − ηµρjσs )− i(s− 1)
(
δσ−j

µρ
s − δ

ρ
−j

µσ
s

)
, (4.7.4)

[D, js] = −i∆sjs . (4.7.5)

The last three relations express the fact that js is a spin s conformal primary with scaling dimension

∆s. Recall that ∆s = s + 1, except for the quasi-fermionic scalar j̃0, for which ∆0̃ = 2. Here, as in

section 4.3.2, we are taking all polarization vectors to be given by zµ = δµ−, so jµνs ≡ jµνs −−−....

A double-trace operator such as (∂2
−js)∂−j0 is proportional to

[P−, [P−, js]] [P−, j0] , (4.7.6)

which, using the state-operator correspondence, we can also write schematically as

P 2
− |js〉P− |j0〉 . (4.7.7)

Let us constrain the double-trace terms in the non-conservation equation involving a quasi-fermionic

scalar, given by equation (4.3.19) from the main text:

∂ · js
∣∣∣
s1,0
∼

p∑
m=0

cmP
m
− |js1〉P

p−m
− |j̃0〉 . (4.7.8)

where p = s− s1 − 1.
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Acting on this expression with K+, we obtain

0 = K+∂ · js
∣∣∣
s1,0

(4.7.9)

=

p∑
m=0

cm
((
K+P

m
− |js1〉

)
P p−m− |j̃0〉+ Pm− |js1〉

(
K+P

p−m
− |j̃0〉

))
(4.7.10)

=

p∑
m=0

cm
((

[K+, P
m
− ] |js1〉

)
P p−m− |j̃0〉+ Pm− |js1〉

(
[K+, P

p−m
− ] |j̃0〉

))
. (4.7.11)

Then we use

[Kδ, P
n
−] = 2inPn−1

− (η−δD +M−δ) + 2n(n− 1)η−δP
n−1
− (4.7.12)

and the action of the conformal generators on |js〉 to obtain

p∑
m=1

(m(m+ 2s1)cm)Pm−1
− |js1〉P

p−m
− |j̃0〉+

p−1∑
m=0

(m− p)(m− p− 1)cmP
m
− |js1〉P

p−m−1
− |j̃0〉 = 0,

(4.7.13)

which implies

cm =
−(m− p− 1)(m− p− 2)

m(m+ 2s1)
cm−1, (4.7.14)

which can be solved to give equation (4.3.21):

cm = (−1)
m

(
s− s1

m

)(
s+ s1 − 1

m+ 2s1

)
Cs1,0̃,s3 . (4.7.15)

The resulting expression is also annihilated by K3 and K−.

Similar (but more lengthy) calculations determine analogous recurrence relations for contributions

to the non-conservation equation involving the quasi-bosonic scalar (4.3.22) and general non-zero spins

(4.3.17). These can be solved to give (4.3.23)-(4.3.24), and (4.3.18).

4.8 Appendix: Some results for parity-odd three-point func-

tions

In this appendix, we present slightly simpler recurrence relations for the parity odd three-point func-

tions.

Let us briefly review the notation of [174]. Consider the three point function of three operators
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Os1(x1, z1), Os2(x2, z2), and Os3(x3, z3), of spins s1, s2 and s3 and twists τ1, τ2 and τ3. Conformal

invariance restricts the three point function of these operators to take on the form

〈Os1Os2Os3〉 =
1

|x12|τ1+τ2−τ3 |x23|−τ1+τ2+τ3 |x31|−τ2+τ1+τ3
f(Pi, Qi, Si). (4.8.1)

where f(Pi, Qi, Si) is a polynomial in the cross ratios Pi, Qi and Si defined for i = 1, 2, 3, using

polarization spinors zµi (σµ)αβ ≡ (λi)α(λi)β as

P3 = λ1
/x12

x2
12

λ2 , (4.8.2)

Q3 = λ3

(
/x31

x2
31

+
/x23

x2
23

)
λ3 , (4.8.3)

S3 = i
1

|x12||x23||x31|
(
λ2/x12/x23λ3

)
(λ1

/x12

x2
12

λ2) , (4.8.4)

and cyclic permutations. Here /x ≡ xµσµ. To match spin, f must be homogeneous of degree si in each

of the zi. The cross ratios are not all independent, and satisfy some constraints listed in [174].

In terms of the null polarization vectors zi, the cross-ratios can be written as:

P 2
3 = −2zµ1 z

ν
2

(
δµν
x2

12

− 2xµ12x
ν
12

x4
12

)
, (4.8.5)

Q3 = 2zµ3

(
xµ32

x2
32

− xµ31

x2
31

)
, (4.8.6)

S3 = 4
εµνρ

|x31||x12|3|x23|

(
xµ12x

ν
31z

ρ
1z2 · x12 −

1

2
(|x31|2xµ12 + |x12|2xµ31)zν1 z

ρ
2

)
. (4.8.7)

Parity odd three-point functions are linear in the Si, while parity even three-point functions do not

contain the Si.

If some of the operators are conserved currents, we must also require that the appropriate di-

vergence of the three-point function vanishes. We note that taking divergences with respect to x3

of a correlation function involving a twist-1 operator is facilitated using the operator D3 defined in

Appendix F of [15], which satisfies:

∂λ3
/∂x3

∂λ3

1

|x12|τ1+τ2−1|x23|−τ1+τ2+1|x31|−τ2+τ1+1
f(P1, P2, P3, Q1, Q2, Q3) ≡

1

|x12|τ1+τ2−3|x23|−τ1+τ2+3|x31|−τ2+τ1+3
D3f(P1, P2, P3, Q1, Q2, Q3).

(4.8.8)
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In the main text, we defined the divergence of js using ∂ · js(x, z) ≡ ∂xµDµ
z js(x, z). A useful relation

is

∂λ /∂x∂λ = 4∂µDµ. (4.8.9)

4.8.1 A simpler form for the recurrence relations

Equation (4.6.14) for 〈js1js2js3〉 can also be written as:

〈js1js2js3(x3, z3)〉 =
1

|x12||x23||x31|

s3−1∑
a=0

(
caQ

s1−1−a
1 P 2a

2 P
2(s3−1−a)
1 Qs2−s3+1+a

2 S2

)
. (4.8.10)

after using the identities: Q3 = P 2
1 /Q2 + P 2

2 /Q1 and Q1S1 = Q2S2 to eliminate Q3 and S2. To fix

the range of a we note that, starting from a polynomial including S2 and Q3 with all non-negative

exponents, after using identities to eliminate Q3 and S1, we could end up with an expression where

the exponents of the Qi are negative; however the exponents of the Pi must still be non-negative.

(Note that ca defined here is unrelated to the ca that appears in section 4.3.2 or Appendix 4.7.)

While any three-point function of the form (4.6.14) can be written in the form (4.8.10), not every

expression in the form (4.8.10) corresponds to a valid three-point function. To see this, note that

equation (4.8.10) can also be rewritten as

〈js1js2js3(x3, z3)〉 =
1

|x12||x23||x31|

s3−1∑
m=0

c̃mQ
s1−1−m
1 Qs3−1−m

3 P 2m
2 Qs22 S2 , (4.8.11)

where

c̃m =

m∑
a=0

(−1)s3−1−n
(
s3 − 1− a
s3 − 1−m

)
ca . (4.8.12)

If s2 = 0, then even outside the light like OPE limit, the correlation function must be of the form

(4.8.11). If s3 > s1, which we assume in what follows, we must have c̃m = 0 for m > s1 − 1. This is

an extra constraint on the cn.

For all spins nonzero, there are also constraints on c̃m that arise from demanding that the expression

can be written in terms of only positive powers of the various cross-ratios P1 , P2, Q1, Q2 and Q3,

S1 and S2. To obtain one such constraint, which is sufficient for our purposes, choose points and

polarization spinors so that Q3 = 0 which implies Q1P
2
1 = −Q2P

2
2 . Then, outside the triangle
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inequality, equation (4.6.14) vanishes. However, (4.8.10) does not vanish unless

s3−1∑
a=0

(−1)aca = 0 , (4.8.13)

which must be imposed for (4.8.10) to represent a valid three-point function, outside the triangle

inequality. (Inside the triangle inequality, we do not need to impose (4.8.13).)

Conserved three-point functions

To take the divergence with respect to x3, we act on the above expression with the operator D3 derived

in equations F.2 of [15].

In the limit P3 = 0, for expressions independent of Q3, it takes the simple form (equation I.4

of [15]):

D3 =− (1 + 2P1∂P1 + 2Q2∂Q2)Q1∂
2
P2

+ (1 + 2P2∂P2 + 2Q1∂Q1)Q2∂
2
P1

+
(
P 2

3 ∂Q2
+ 2P2P3∂P1

)
∂2
P2
−
(
P 2

3 ∂Q1
+ 2P1P3∂P2

)
∂2
P1
.

(4.8.14)

We also use the identities 2.20 of [174] to derive S2
1 = Q2P

2
1P

2
2Q
−1
1 , which yields:

∂P1
S1 = S1P

−1
1 , ∂P2

S1 = S1P
−1
2 , ∂Q1

S1 = −1

2
S1Q

−1
1 , ∂Q2

S1 =
1

2
S1Q

−2
2 . (4.8.15)

These relations are valid only when P3 = S3 = 0, i.e., in the light-like limit.

We find

D3

s3−1∑
a=0

(
caQ

s1−a
1 P 2a

2 P
2(s3−1−a)
1 Qs2−s3+a

2 S1

)
=

s3−2∑
a=0

4 (−ca+1(s3 + s2 − a− 1)(a+ 1)(2a+ 3) + ca(1 + a+ s1)(2s3 − 2a− 1)(s3 − a− 1))χ

(4.8.16)

where

χ = Qs1−a1 P 2a
2 P 2s3−2a−2

1 Qs2−s3+1+a
2 S1. (4.8.17)

If js3 is exactly conserved, then the condition that the divergence of equation (4.8.10) is equal to
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0 gives rise to the following recurrence relation:

ca+1

ca
=

(1 + a+ s1)(2s3 − 2a− 1)(s3 − a− 1)

(s3 + s2 − a− 1)(a+ 1)(2a+ 3)
. (4.8.18)

This has a unique solution for any values of s1, s2 and s3. It can be expressed in terms of Pochhammer

symbols as

ca = −
(−1)ac0(s1 + 1)(s3 − 1)(2s3 − 1)(s1 + 2)a−1

(
3
2 − s3

)
a−1

(2− s3)a−1

3(2)a−1

(
5
2

)
a−1

(s2 + s3 − 1)(−s2 − s3 + 2)a−1

(4.8.19)

and the sum is a hypergeometric function

〈js1js2js3(x3, z3)〉 =
Qs1−1

1 P
2(s3−1)
1 Qs2−s3+1

2 S2

|x12||x23||x31|
c0 3F2

(
s1 + 1,

1

2
− s3, 1− s3;

3

2
,−s2 − s3 + 1;u

)
(4.8.20)

where u = −P
2
2Q2

Q1P 2
1

.

If s3 > s1 + s2, then, as discussed above, we must also impose the extra constraint (4.8.13) for our

solution to represent a valid three-point function expressible in the form (4.6.14). This is

c0 3F2

(
s1 + 1,

1

2
− s3, 1− s3;

3

2
,−s2 − s3 + 1; 1

)
= 0 (4.8.21)

which implies that c0 = 0 and the exactly conserved correlation functions vanish outside the triangle

inequality, in the light-like OPE limit. (In section 4.8.2, we argue that these correlation function

vanish even outside the light-like OPE limit.)

Non-conserved parity odd three-point functions

Outside the triangle inequality, the parity-odd three-point function is not conserved. In the light-like

limit, its divergence with respect to x3 takes the form:

∂xµ3D
µ
z3〈js1(x1)js2(x2)js3(x3, z3)〉 =

|x12|
|x23|3|x31|3

∑
a

daQ
s1−a−1
1 P 2a

2 P 2s3−2a−4
1 Qs2−s3+2+a

2 S2 (4.8.22)

where,

da = −ca+1(s3 + s2 − a− 1)(a+ 1)(2a+ 3) + ca(1 + a+ s1)(2s3 − 2a− 1)(s3 − a− 1) (4.8.23)
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The result of the divergence calculation, (4.6.17) determines the da in terms of Cs1,s2,s3 :

ds1−1 = AK , (4.8.24)

ds1−1+n =

((
p− 1

n

)
A+

(
p− 1

n− 1

)
B

)
K , (4.8.25)

ds1−1+p = ds3−s2−1 = BK , (4.8.26)

with all other da = 0, and we define

K = (−1)s3−s2−s1
ns1ns2Ñ

2Cs1,s2,s3(s3 + s1 + s2 − 1)!

22s1+2s2−1(s3 − s1 − s2)(2s1)!(2s2)!
.

The spin-dependent constants A and B were defined below equation (4.6.17).

We can now determine a recurrence relation the ca in terms of da (and hence Cs1,s2,s3) using

equation (4.8.23). Equation (4.8.23) can be written as:

ca+1 = Eca + Fda , (4.8.27)

where

E =
(1 + a+ s1)(2s3 − 2a− 1)(s3 − a− 1)

(1 + a)(2a+ 3)(s3 + s2 − a− 1)
, F = − ((1 + a)(2a+ 3)(s3 + s2 − a− 1))

−1
. (4.8.28)

The solution to equation (4.8.23) for ca depends on two parameters: c0 and Cs1,s2,s3 (which enters

through the da), but imposing the extra constraint (4.8.13) determines the c0 in terms of Cs1,s2,s3 .

Alternatively, we can obtain a relation between c0 and Cs1,s2,s3 by demanding conservation with

respect to the other currents, before taking the light-like limit.

Quasi-fermionic scalars

For parity-odd correlation functions involving the (parity-odd) twist-two quasi-fermionic scalar oper-

ator, we have:

〈js1j0̃js3〉 =
1

|x12|2|x23|2
s3−1∑
a

caQ
s1−a
1 P 2a

2 P
2(s3−a)
1 Q−s3+a

2 . (4.8.29)

and, using

D̃3 = −(2 + 2P1∂P1 + 2Q2∂Q2)Q1∂
2
P2

+ (2P2∂P2 + 2Q1∂Q1)Q2∂
2
P1
. (4.8.30)
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we can write its divergence as,

∂xµ3D
µ
z3〈js1j0̃js3(x3, z3)〉 =

1

|x23|4|x31|2
s3−1∑
a=0

daQ
s1−a
1 P 2a

2 P
2(s3−a−1)
1 Q−s3+a+1

2 . (4.8.31)

with

da = (s3 − a)(s1 + a)(2s3 − 2a− 1)ca − (a+ 1)(2a+ 1)(s3 − a)ca+1. (4.8.32)

Comparing to our earlier expression (4.6.3), we find

ds1+n =

(
s3 − s1 − 1

n

)
(−1)s3−s1−1 (s3 − s1)(s3 + s1 − 1)!

22s1(2s1)!
ns1n0̃Cs1,0̃ (4.8.33)

for n = 0, . . . , s3 − s1 − 1.

The recurrence relation depends on two unknown parameters: c0 and Cs1,0,s3 . By requiring the

correlation function to vanish when Q3 = 0, we obtain a relation between these two parameters.

4.8.2 Conserved parity-odd three-point functions vanish outside the tri-

angle inequality

Above, we showed that the conserved parity-odd three-point function vanishes outside the triangle

inequality in the light-like limit, where P3 = 0 and S3 = 0. Let us extend this to a proof that the

conserved parity-odd three-point functions vanishes even outside the light-like limit.

Our strategy is to expand the three-point function as a power series in P3, where we count S3 ∼ P3.

Let m > 0, and use induction. If we assume all terms of order Pm−1
3 vanish, we can show that

conservation implies the terms of order Pm3 must also vanish.

The most general three-point function can be written as:

〈js1js2js3(x3, z3)〉 =
1

|x12||x23||x31|
f(Pi, Qi, Si). (4.8.34)

By writing down the most general allowed form for f(Pi, Qi, Si) that is order P 2m
3 , and dropping

terms of order P 2m+1
3 and higher we can see that, if s3 > s1 + s2, any term we write down must be

proportional to Qz3, where z ≥ 1. Hence the correlation function must vanish in the limit that Q3 = 0.

We can also write the three-point function in terms of Q1, Q2, P1, P2 only, by explicitly solving
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the constraints in [174] and allowing negative exponents for the Qi:

〈js1js2js3(x3, z3)〉 = P 2m
3

1

|x12||x23||x31|

s3−1∑
a=0

(
caQ

s1−m−1−a
1 P 2a

2 P
2(s3−1−a)
1 Qs2−m−s3+1+a

2 S2

)
.

(4.8.35)

Then, imposing conservation, we find an essentially identical recurrence relation to Equation (4.8.18)

above. When we also impose the condition that it vanishes when Q3 = 0, as in equation (4.8.13), we

find that there is no solution.

4.9 Appendix: List of parity-odd three-point functions

We present the non-zero parity-odd three-point functions outside the triangle inequality, for spins up

to 6 in the theory, using values of Cs1,s2,s3 derived from the classical equations of motion.

Correlation Functions involving a Quasi-Fermionic Scalar The correlation functions listed

below are to be multiplied by

Ñ λ̃
1

|x12|2|x23|2
.

(We remind the reader that our normalization for the scalar, given in equation (4.3.6), is such that

this is exact to all orders in λ̃.)

〈j1j0̃j3〉 =
Q2

3

(
2P 2

2 +Q1Q3

)
8π4

〈j2j0̃j4〉 = −
Q2

3

(
−10P 2

2Q1Q3 + P 4
2 −Q2

1Q
2
3

)
8π4

〈j1j0̃j5〉 =
Q4

3

(
4P 2

2 +Q1Q3

)
8π4

〈j3j0̃j5〉 = −
Q2

3

(
P 4

2Q1Q3 − 22P 2
2Q

2
1Q

2
3 + 16P 6

2 −Q3
1Q

3
3

)
8π4

〈j2j0̃j6〉 =
Q4

3

(
16P 2

2Q1Q3 + 4P 4
2 +Q2

1Q
2
3

)
8π4

〈j4j0̃j6〉 = −
Q2

3

(
−24P 6

2Q1Q3 − 125P 4
2Q

2
1Q

2
3 − 38P 2

2Q
3
1Q

3
3 + 62P 8

2 −Q4
1Q

4
3

)
8π4
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Correlation functions involving a Quasi-Bosonic Scalar The correlation functions listed below

are to be multiplied by

Ñ λ̃
1

|x12||x23||x31|
.

〈j1j0j3〉 = − iQ
2
3S2

16π4
(4.9.1)

〈j2j0j4〉 = −
iQ2

3S2

(
4P 2

2 +Q1Q3

)
16π4

(4.9.2)

〈j1j0j5〉 = − iQ
4
3S2

16π4
(4.9.3)

〈j3j0j5〉 = −
iQ2

3S2

(
2P 2

2 +Q1Q3

) (
6P 2

2 +Q1Q3

)
16π4

(4.9.4)

〈j2j0j6〉 = −
iQ4

3S2

(
6P 2

2 +Q1Q3

)
16π4

(4.9.5)

〈j4j0j6〉 = −
iQ2

3S2

(
107P 4

2Q1Q3 + 40P 2
2Q

2
1Q

2
3 + 102P 6

2 + 3Q3
1Q

3
3

)
48π4

(4.9.6)

All Spins nonzero The correlation functions listed below are to be multiplied by

Ñ
λ̃

1 + λ̃2

1

|x12||x23||x31|
.

We also omit an overall numerical normalization constant (which is in principle determinable from

Cs1,s2,s3 and the recurrence relations given above.) These are all valid outside the light-like OPE limit

as well. To fix the coefficients of terms that vanish in the light-like limit, we also imposed conservation
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with respect to x1 and x2.

〈j1j2j5〉 ∼ Q2
3

(
− 6P 4

1 S2 + 6P 2
1Q1Q3S1 + 15P 2

1Q2Q3S2 − P 2
1Q

2
3S3 + 5P 2

2Q2Q3S1 + P 2
3Q

2
3S1 +

Q2Q
3
3S3

)
(4.9.7)

〈j1j1j6〉 ∼ Q5
3(3Q1S1 + 3Q2S2 − 2Q3S3) (4.9.8)

〈j1j3j6〉 ∼ Q2
3

(
72P 6

1 S2 − 32P 4
1Q1Q3S1 − 208P 4

1Q2Q3S2 + 9P 4
1Q

2
3S3 − 148P 2

1P
2
2Q2Q3S1

−58P 2
1Q2Q

3
3S3 + 26P1P2P3Q2Q

2
3S1 − 18P 2

2Q
2
2Q

2
3S1 − 6P 2

3Q2Q
3
3S1

−3Q2
2Q

4
3S3

)
(4.9.9)

〈j2j2j6〉 ∼ Q3
3

(
14P 4

1Q1S2 − 88P 3
1P2P3S2 + 95P 2

1P
2
2Q2S2 + 27P 2

1P
2
2Q3S3 + 7P 2

1Q
2
1Q3S1

+7P1P2P3Q2Q3S2 − 39P1P2P3Q
2
3S3 + 21P 4

2Q2S1 + 7P 2
2Q2Q

2
3S3

+3P 2
3Q

3
3S3

)
(4.9.10)

136



Bibliography

[1] “73 - ON THE THEORY OF SUPERCONDUCTIVITY,” in Collected Papers of L.D. Landau

(D. T. HAAR, ed.), pp. 546 – 568. Pergamon, 1965.

[2] K. G. Wilson, “Renormalization Group and Critical Phenomena. I. Renormalization Group

and the Kadanoff Scaling Picture,” Phys. Rev. B 4 (Nov, 1971) 3174–3183.

[3] A. B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group in a 2D Field

Theory,” JETP Lett. 43 (1986) 730–732.

[4] J. Polchinski, “Scale and Conformal Invariance in Quantum Field Theory,” Nucl. Phys. B303

(1988) 226–236.

[5] Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,”

JHEP 1112 (2011) 099, 1107.3987.

[6] Y. Nakayama, “Scale invariance vs conformal invariance,” Phys. Rept. 569 (2015) 1–93,

1302.0884.

[7] H. Casini and M. Huerta, “Renormalization group running of the entanglement entropy of a

circle,” Phys. Rev. D 85 (Jun, 2012) 125016.

[8] I. R. Klebanov, T. Nishioka, S. S. Pufu, and B. R. Safdi, “Is renormalized entanglement

entropy stationary at RG fixed points?,” Journal of High Energy Physics 2012 (Oct, 2012) 58.

[9] B. Grinstein, A. Stergiou, and D. Stone, “Consequences of Weyl consistency conditions,”

Journal of High Energy Physics 2013 (Nov, 2013) 195.

[10] P. Di Francesco, P. Mathieu, and D. Snchal, Conformal field theory. Graduate texts in

contemporary physics. Springer, New York, NY, 1997.

137



[11] J. D. Qualls, “Lectures on Conformal Field Theory,” 1511.04074.

[12] A. M. Polyakov, “Conformal symmetry of critical fluctuations,” JETP Lett. 12 (1970)

381–383. [Pisma Zh. Eksp. Teor. Fiz.12,538(1970)].

[13] G. Mack, “All Unitary Ray Representations of the Conformal Group SU(2,2) with Positive

Energy,” Commun. Math. Phys. 55 (1977) 1.

[14] S. Minwalla, “Restrictions imposed by superconformal invariance on quantum field theories,”

Adv. Theor. Math. Phys. 2 (1998) 781–846, hep-th/9712074.

[15] J. Maldacena and A. Zhiboedov, “Constraining Conformal Field Theories with A Higher Spin

Symmetry,” J.Phys. A46 (2013) 214011, 1112.1016.

[16] N. Boulanger, D. Ponomarev, E. D. Skvortsov, and M. Taronna, “On the uniqueness of

higher-spin symmetries in AdS and CFT,” Int. J. Mod. Phys. A28 (2013) 1350162, 1305.5180.

[17] Y. S. Stanev, “Constraining conformal field theory with higher spin symmetry in four

dimensions,” Nucl. Phys. B876 (2013) 651–666, 1307.5209.

[18] V. Alba and K. Diab, “Constraining conformal field theories with a higher spin symmetry in

d=4,” 1307.8092.

[19] V. Alba and K. Diab, “Constraining conformal field theories with a higher spin symmetry in

d > 3 dimensions,” JHEP 03 (2016) 044, 1510.02535.

[20] K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” Phys.Rev.Lett. 28

(1972) 240–243.

[21] J. Maldacena and A. Zhiboedov, “Constraining conformal field theories with a slightly broken

higher spin symmetry,” Class.Quant.Grav. 30 (2013) 104003, 1204.3882.

[22] D. Anselmi, “The N=4 quantum conformal algebra,” Nucl. Phys. B541 (1999) 369–385,

hep-th/9809192.

[23] A. V. Belitsky, J. Henn, C. Jarczak, D. Mueller, and E. Sokatchev, “Anomalous dimensions of

leading twist conformal operators,” Phys. Rev. D77 (2008) 045029, 0707.2936.

[24] S. Rychkov and Z. M. Tan, “The ε-expansion from conformal field theory,” J. Phys. A48

(2015), no. 29 29FT01, 1505.00963.

138



[25] M. A. Vasiliev, “Consistent equation for interacting gauge fields of all spins in

(3+1)-dimensions,” Phys.Lett. B243 (1990) 378–382.

[26] M. A. Vasiliev, “More on equations of motion for interacting massless fields of all spins in

(3+1)-dimensions,” Phys. Lett. B285 (1992) 225–234.

[27] M. A. Vasiliev, “Higher spin gauge theories: Star-product and AdS space,” hep-th/9910096.

[28] M. Vasiliev, “Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),”

Phys.Lett. B567 (2003) 139–151, hep-th/0304049.

[29] I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical O(N) vector model,” Phys. Lett.

B550 (2002) 213–219, hep-th/0210114.

[30] L. Fei, S. Giombi, and I. R. Klebanov, “Critical O(N) Models in 6− ε Dimensions,” Phys.Rev.

D90 (2014) 025018, 1404.1094.

[31] I. R. Klebanov and E. Witten, “AdS / CFT correspondence and symmetry breaking,”

Nucl.Phys. B556 (1999) 89–114, hep-th/9905104.

[32] L. Girardello, M. Porrati, and A. Zaffaroni, “3-D interacting CFTs and generalized Higgs

phenomenon in higher spin theories on AdS,” Phys. Lett. B561 (2003) 289–293,

hep-th/0212181.

[33] S. Giombi and V. Kirilin, “Anomalous dimensions in CFT with weakly broken higher spin

symmetry,” JHEP 11 (2016) 068, 1601.01310.

[34] S. Giombi, V. Kirilin, and E. Skvortsov, “Notes on Spinning Operators in Fermionic CFT,”

JHEP 05 (2017) 041, 1701.06997.

[35] S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash, and E. Skvortsov, “On the Higher-Spin

Spectrum in Large N Chern-Simons Vector Models,” 1610.08472.

[36] V. K. Dobrev, V. B. Petkova, S. G. Petrova, and I. T. Todorov, “Dynamical Derivation of

Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory,” Phys.

Rev. D13 (1976) 887.

[37] N. S. Craigie, V. K. Dobrev, and I. T. Todorov, “Conformally Covariant Composite Operators

in Quantum Chromodynamics,” Annals Phys. 159 (1985) 411–444.

139



[38] M. S. Costa, J. Penedones, D. Poland, and S. Rychkov, “Spinning Conformal Correlators,”

JHEP 11 (2011) 071, 1107.3554.

[39] Z. Komargodski and A. Zhiboedov, “Convexity and Liberation at Large Spin,” JHEP 11

(2013) 140, 1212.4103.

[40] A. L. Fitzpatrick, J. Kaplan, D. Poland, and D. Simmons-Duffin, “The Analytic Bootstrap

and AdS Superhorizon Locality,” JHEP 12 (2013) 004, 1212.3616.

[41] L. F. Alday and A. Zhiboedov, “An Algebraic Approach to the Analytic Bootstrap,”

1510.08091.

[42] I. Heemskerk, J. Penedones, J. Polchinski, and J. Sully, “Holography from Conformal Field

Theory,” JHEP 10 (2009) 079, 0907.0151.

[43] F. A. Dolan and H. Osborn, “Conformal Partial Waves: Further Mathematical Results,”

1108.6194.

[44] K. Wilson and J. B. Kogut, “The Renormalization group and the epsilon expansion,”

Phys.Rept. 12 (1974) 75–200.

[45] K. Lang and W. Ruhl, “The Critical O(N) sigma model at dimensions 2 < d < 4: Fusion

coefficients and anomalous dimensions,” Nucl.Phys. B400 (1993) 597–623.

[46] G. Parisi, “How to measure the dimension of the parton field,” Nucl. Phys. B59 (1973)

641–646.

[47] C. G. Callan, Jr. and D. J. Gross, “Bjorken scaling in quantum field theory,” Phys. Rev. D8

(1973) 4383–4394.

[48] L. F. Alday and J. M. Maldacena, “Comments on operators with large spin,” JHEP 11 (2007)

019, 0708.0672.

[49] L. Fei, S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Three loop analysis of the critical

O(N) models in 6− ε dimensions,” Phys.Rev. D91 (2015), no. 4 045011, 1411.1099.

[50] J. A. Gracey, “Four loop renormalization of φ3 theory in six dimensions,” Phys. Rev. D92

(2015), no. 2 025012, 1506.03357.

140



[51] V. M. Braun and A. N. Manashov, “Evolution equations beyond one loop from conformal

symmetry,” Eur. Phys. J. C73 (2013) 2544, 1306.5644.

[52] A. N. Manashov and M. Strohmaier, “Conformal constraints for anomalous dimensions of

leading twist operators,” Eur. Phys. J. C75 (2015), no. 8 363, 1503.04670.

[53] S. E. Derkachov and A. N. Manashov, “The Simple scheme for the calculation of the

anomalous dimensions of composite operators in the 1/N expansion,” Nucl. Phys. B522

(1998) 301–320, hep-th/9710015.

[54] M. Fisher, “Yang-Lee Edge Singularity and phi**3 Field Theory,” Phys.Rev.Lett. 40 (1978)

1610–1613.

[55] L. Fei, S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Critical Sp(N) models in 6− ε

dimensions and higher spin dS/CFT,” JHEP 09 (2015) 076, 1502.07271.

[56] S. Caracciolo, J. L. Jacobsen, H. Saleur, A. D. Sokal, and A. Sportiello, “Fermionic field theory

for trees and forests,” Phys. Rev. Lett. 93 (2004) 080601, cond-mat/0403271.

[57] M. Moshe and J. Zinn-Justin, “Quantum field theory in the large N limit: A Review,”

Phys.Rept. 385 (2003) 69–228, hep-th/0306133.

[58] E. Brezin and J. Zinn-Justin, “Renormalization of the nonlinear sigma model in 2 + epsilon

dimensions. Application to the Heisenberg ferromagnets,” Phys. Rev. Lett. 36 (1976) 691–694.

[59] W. A. Bardeen, B. W. Lee, and R. E. Shrock, “Phase Transition in the Nonlinear Sigma

Model in Two + Epsilon Dimensional Continuum,” Phys. Rev. D14 (1976) 985.

[60] S. E. Derkachov, J. A. Gracey, and A. N. Manashov, “Four loop anomalous dimensions of

gradient operators in phi**4 theory,” Eur. Phys. J. C2 (1998) 569–579, hep-ph/9705268.

[61] H. Kleinert and V. Schulte-Frohlinde, “Critical properties of φ4-theories,” River Edge, USA:

World Scientific (2001) 489 p.

[62] L. F. Alday and A. Zhiboedov, “Conformal Bootstrap With Slightly Broken Higher Spin

Symmetry,” 1506.04659.

[63] F. Kos, D. Poland, and D. Simmons-Duffin, “Bootstrapping the O(N) vector models,” JHEP

1406 (2014) 091, 1307.6856.

141



[64] A. Vasiliev, Y. Pismak, and Y. Khonkonen, “1/N Expansion: Calculation of the Exponents η

and ν in the Order 1/N2 for Arbitrary Number of Dimensions,” Theor.Math.Phys. 47 (1981)

465–475.

[65] A. Vasiliev, Y. Pismak, and Y. Khonkonen, “1/N Expansion: Calculation of the Exponent η in

the Order 1/N3 by the Conformal Bootstrap Method,” Theor.Math.Phys. 50 (1982) 127–134.

[66] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, “Critical limit and anisotropy in the

two point correlation function of three-dimensional O(N) models,” Europhys. Lett. 38 (1997)

577–582, cond-mat/9612164.

[67] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, et. al., “Solving the

3D Ising Model with the Conformal Bootstrap,” Phys.Rev. D86 (2012) 025022, 1203.6064.

[68] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, et. al., “Solving the 3d

Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents,”

1403.4545.

[69] M. Hasenbusch, “Finite size scaling study of lattice models in the three-dimensional Ising

universality class,” Phys. Rev. B 82 (Nov., 2010) 174433, 1004.4486.

[70] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, “25th order high temperature

expansion results for three-dimensional Ising like systems on the simple cubic lattice,” Phys.

Rev. E65 (2002) 066127, cond-mat/0201180.

[71] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, “Improved high temperature expansion

and critical equation of state of three-dimensional Ising - like systems,” Phys. Rev. E60 (1999)

3526–3563, cond-mat/9905078.

[72] M. Campostrini, M. Hasenbusch, A. Pelissetto, and E. Vicari, “The Critical exponents of the

superfluid transition in He-4,” Phys. Rev. B74 (2006) 144506, cond-mat/0605083.

[73] S. Giombi and I. R. Klebanov, “Interpolating between a and F ,” JHEP 03 (2015) 117,

1409.1937.

[74] L. Fei, S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Generalized F -Theorem and the ε

Expansion,” JHEP 12 (2015) 155, 1507.01960.

142



[75] A. V. Belitsky and D. Mueller, “Broken conformal invariance and spectrum of anomalous

dimensions in QCD,” Nucl. Phys. B537 (1999) 397–442, hep-ph/9804379.

[76] D. J. Gross and A. Neveu, “Dynamical Symmetry Breaking in Asymptotically Free Field

Theories,” Phys.Rev. D10 (1974) 3235.

[77] K. G. Wilson, “Quantum field theory models in less than four-dimensions,” Phys. Rev. D7

(1973) 2911–2926.

[78] D. J. Gross, “Applications of the Renormalization Group to High-Energy Physics,” Conf.

Proc. C7507281 (1975) 141–250.

[79] J. Zinn-Justin, “Four fermion interaction near four-dimensions,” Nucl.Phys. B367 (1991)

105–122.

[80] A. Hasenfratz, P. Hasenfratz, K. Jansen, J. Kuti, and Y. Shen, “The Equivalence of the top

quark condensate and the elementary Higgs field,” Nucl.Phys. B365 (1991) 79–97.

[81] L. Karkkainen, R. Lacaze, P. Lacock, and B. Petersson, “Critical behavior of the 3-d

Gross-Neveu and Higgs-Yukawa models,” Nucl.Phys. B415 (1994) 781–796, hep-lat/9310020.

[82] K. Diab, L. Fei, S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “On CJ and CT in the

Gross-Neveu and O(N) Models,” J. Phys. A49 (2016), no. 40 405402, 1601.07198.

[83] L. Fei, S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Yukawa CFTs and Emergent

Supersymmetry,” PTEP 2016 (2016), no. 12 12C105, 1607.05316.

[84] E. D. Skvortsov, “On (Un)Broken Higher-Spin Symmetry in Vector Models,” 1512.05994.

[85] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia, et. al., “Chern-Simons Theory

with Vector Fermion Matter,” Eur.Phys.J. C72 (2012) 2112, 1110.4386.

[86] O. Aharony, G. Gur-Ari, and R. Yacoby, “d=3 Bosonic Vector Models Coupled to

Chern-Simons Gauge Theories,” JHEP 1203 (2012) 037, 1110.4382.

[87] T. Muta and D. S. Popovic, “Anomalous Dimensions of Composite Operators in the

Gross-Neveu Model in Two + Epsilon Dimensions,” Prog. Theor. Phys. 57 (1977) 1705.

[88] A. N. Manashov and E. D. Skvortsov, “Higher-spin currents in the Gross-Neveu model at

1/n2,” 1610.06938.

143



[89] S. Giombi and X. Yin, “The Higher Spin/Vector Model Duality,” J.Phys. A46 (2013) 214003,

1208.4036.

[90] V. E. Didenko and E. D. Skvortsov, “Elements of Vasiliev theory,” 1401.2975.

[91] S. Giombi, “TASI Lectures on the Higher Spin - CFT duality,” 1607.02967.

[92] P. Basu and C. Krishnan, “ε-expansions near three dimensions from conformal field theory,”

JHEP 11 (2015) 040, 1506.06616.

[93] K. Sen and A. Sinha, “On critical exponents without Feynman diagrams,” J. Phys. A49

(2016), no. 44 445401, 1510.07770.

[94] S. Ghosh, R. K. Gupta, K. Jaswin, and A. A. Nizami, “ε-Expansion in the Gross-Neveu model

from conformal field theory,” JHEP 03 (2016) 174, 1510.04887.

[95] A. Raju, “ε-Expansion in the Gross-Neveu CFT,” 1510.05287.

[96] V. Bashmakov, M. Bertolini, and H. Raj, “Broken current anomalous dimensions, conformal

manifolds and RG flows,” 1609.09820.

[97] V. Bashmakov, M. Bertolini, L. Di Pietro, and H. Raj, “Scalar Multiplet Recombination at

Large N and Holography,” JHEP 05 (2016) 183, 1603.00387.

[98] K. Nii, “Classical equation of motion and Anomalous dimensions at leading order,” JHEP 07

(2016) 107, 1605.08868.

[99] K. Roumpedakis, “Leading Order Anomalous Dimensions at the Wilson-Fisher Fixed Point

from CFT,” 1612.08115.

[100] P. Liendo, “Revisiting the dilatation operator of the Wilson-Fisher fixed-point,” 1701.04830.

[101] A. N. Vasiliev, S. E. Derkachov, N. A. Kivel, and A. S. Stepanenko, “The 1/n expansion in the

Gross-Neveu model: Conformal bootstrap calculation of the index eta in order 1/n**3,”

Theor. Math. Phys. 94 (1993) 127–136. [Teor. Mat. Fiz.94,179(1993)].

[102] J. A. Gracey, “Calculation of exponent eta to O(1/N**2) in the O(N) Gross-Neveu model,”

Int. J. Mod. Phys. A6 (1991) 395–408. [Erratum: Int. J. Mod. Phys.A6,2755(1991)].

[103] O. Nachtmann, “Positivity constraints for anomalous dimensions,” Nucl. Phys. B63 (1973)

237–247.

144



[104] A. Kaviraj, K. Sen, and A. Sinha, “Analytic bootstrap at large spin,” JHEP 11 (2015) 083,

1502.01437.

[105] L. F. Alday, A. Bissi, and T. Lukowski, “Large spin systematics in CFT,” JHEP 11 (2015)

101, 1502.07707.

[106] P. Dey, A. Kaviraj, and K. Sen, “More on analytic bootstrap for O(N) models,” JHEP 06

(2016) 136, 1602.04928.

[107] A. Kaviraj, K. Sen, and A. Sinha, “Universal anomalous dimensions at large spin and large

twist,” JHEP 07 (2015) 026, 1504.00772.

[108] D. Li, D. Meltzer, and D. Poland, “Non-Abelian Binding Energies from the Lightcone

Bootstrap,” JHEP 02 (2016) 149, 1510.07044.

[109] L. F. Alday, “Large Spin Perturbation Theory,” 1611.01500.

[110] L. F. Alday, “Solving CFTs with Weakly Broken Higher Spin Symmetry,” 1612.00696.

[111] D. Simmons-Duffin, “The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT,”

1612.08471.

[112] T. Leonhardt and W. Ruhl, “The Minimal conformal O(N) vector sigma model at d = 3,” J.

Phys. A37 (2004) 1403–1413, hep-th/0308111.

[113] O. Aharony, G. Gur-Ari, and R. Yacoby, “Correlation Functions of Large N

Chern-Simons-Matter Theories and Bosonization in Three Dimensions,” 1207.4593.

[114] M. Vasiliev, “Higher spin superalgebras in any dimension and their representations,” JHEP

0412 (2004) 046, hep-th/0404124.

[115] K. Alkalaev, “Mixed-symmetry tensor conserved currents and AdS/CFT correspondence,” J.

Phys. A46 (2013) 214007, 1207.1079.

[116] J. Gracey, “Anomalous mass dimension at O(1/N**2) in the O(N) Gross-Neveu model,”

Phys.Lett. B297 (1992) 293–297.

[117] J. A. Gracey, “Computation of critical exponent eta at O(1/N**3) in the four Fermi model in

arbitrary dimensions,” Int. J. Mod. Phys. A9 (1994) 727–744, hep-th/9306107.

145



[118] J. Maldacena and A. Zhiboedov, “Constraining conformal field theories with a slightly broken

higher spin symmetry,” Class.Quant.Grav. 30 (2013) 104003, 1204.3882.

[119] Y. Hikida and T. Wada, “Anomalous dimensions of higher spin currents in large N CFTs,”

JHEP 01 (2017) 032, 1610.05878.

[120] S. Thomas, “Emergent Supersymmetry,” Seminar at KITP (2005).

[121] T. Grover, D. N. Sheng, and A. Vishwanath, “Emergent Space-Time Supersymmetry at the

Boundary of a Topological Phase,” Science 344 (2014), no. 6181 280–283, 1301.7449.

[122] D. Bashkirov, “Bootstrapping the N=1 SCFT in three dimensions,” 1310.8255.

[123] H. Shimada and S. Hikami, “Fractal dimensions of self-avoiding walks and Ising

high-temperature graphs in 3D conformal bootstrap,” 1509.04039.

[124] L. Iliesiu, F. Kos, D. Poland, S. S. Pufu, D. Simmons-Duffin, and R. Yacoby, “Bootstrapping

3D Fermions,” JHEP 03 (2016) 120, 1508.00012.

[125] A. Petkou, “Conserved currents, consistency relations and operator product expansions in the

conformally invariant O(N) vector model,” Annals Phys. 249 (1996) 180–221,

hep-th/9410093.

[126] S. E. Derkachov, N. Kivel, A. Stepanenko, and A. Vasiliev, “On calculation in 1/n expansions

of critical exponents in the Gross-Neveu model with the conformal technique,”

hep-th/9302034.

[127] X. Bekaert, J. Erdmenger, D. Ponomarev, and C. Sleight, “Quartic AdS Interactions in

Higher-Spin Gravity from Conformal Field Theory,” JHEP 11 (2015) 149, 1508.04292.

[128] S. Giombi and I. R. Klebanov, “One Loop Tests of Higher Spin AdS/CFT,” JHEP 1312

(2013) 068, 1308.2337.

[129] S. Giombi, I. R. Klebanov, and B. R. Safdi, “Higher Spin AdSd+1/CFTd at One Loop,”

Phys.Rev. D89 (2014) 084004, 1401.0825.

[130] G. Gur-Ari and R. Yacoby, “Correlators of Large N Fermionic Chern-Simons Vector Models,”

JHEP 1302 (2013) 150, 1211.1866.

146



[131] D. E. Diaz and H. Dorn, “On the AdS higher spin / O(N) vector model correspondence:

Degeneracy of the holographic image,” JHEP 07 (2006) 022, hep-th/0603084.

[132] C. Sleight and M. Taronna, “Higher Spin Interactions from Conformal Field Theory: The

Complete Cubic Couplings,” Phys. Rev. Lett. 116 (2016), no. 18 181602, 1603.00022.

[133] M. S. Costa, V. Gonalves, and J. Penedones, “Spinning AdS Propagators,” JHEP 09 (2014)

064, 1404.5625.

[134] T. Hartman and L. Rastelli, “Double-trace deformations, mixed boundary conditions and

functional determinants in AdS/CFT,” JHEP 0801 (2008) 019, hep-th/0602106.

[135] S. Giombi and X. Yin, “On Higher Spin Gauge Theory and the Critical O(N) Model,”

Phys.Rev. D85 (2012) 086005, 1105.4011.

[136] A. J. Niemi and G. W. Semenoff, “Axial Anomaly Induced Fermion Fractionization and

Effective Gauge Theory Actions in Odd Dimensional Space-Times,” Phys. Rev. Lett. 51 (1983)

2077.

[137] A. Redlich, “Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in

Three-Dimensions,” Phys.Rev. D29 (1984) 2366–2374.

[138] A. Redlich, “Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions,”

Phys.Rev.Lett. 52 (1984) 18.

[139] R. G. Leigh and A. C. Petkou, “Holography of the N = 1 higher-spin theory on AdS(4),”

JHEP 06 (2003) 011, hep-th/0304217.

[140] E. Sezgin and P. Sundell, “Holography in 4D (super) higher spin theories and a test via cubic

scalar couplings,” JHEP 07 (2005) 044, hep-th/0305040.

[141] C.-M. Chang, S. Minwalla, T. Sharma, and X. Yin, “ABJ Triality: from Higher Spin Fields to

Strings,” J.Phys. A46 (2013) 214009, 1207.4485.

[142] Y. Hikida, “The masses of higher spin fields on AdS4 and conformal perturbation theory,”

Phys. Rev. D94 (2016), no. 2 026004, 1601.01784.

[143] R. Gopakumar, A. Kaviraj, K. Sen, and A. Sinha, “Conformal Bootstrap in Mellin Space,”

1609.00572.

147



[144] O. Aharony, “Baryons, monopoles and dualities in Chern-Simons-matter theories,” JHEP 02

(2016) 093, 1512.00161.

[145] D. Radicevic, “Disorder Operators in Chern-Simons-Fermion Theories,” JHEP 03 (2016) 131,

1511.01902.

[146] W. Chen, G. W. Semenoff, and Y.-S. Wu, “Two loop analysis of nonAbelian Chern-Simons

theory,” Phys.Rev. D46 (1992) 5521–5539, hep-th/9209005.

[147] S. G. Naculich, H. A. Riggs, and H. J. Schnitzer, “Group Level Duality in WZW Models and

Chern-Simons Theory,” Phys. Lett. B246 (1990) 417–422.

[148] E. J. Mlawer, S. G. Naculich, H. A. Riggs, and H. J. Schnitzer, “Group level duality of WZW

fusion coefficients and Chern-Simons link observables,” Nucl. Phys. B352 (1991) 863–896.

[149] M. Camperi, F. Levstein, and G. Zemba, “The Large N Limit of Chern-Simons Gauge

Theory,” Phys. Lett. B247 (1990) 549–554.

[150] O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena, and R. Yacoby, “The Thermal Free Energy

in Large N Chern-Simons-Matter Theories,” 1211.4843.

[151] S. Jain, S. Minwalla, T. Sharma, T. Takimi, S. R. Wadia, et. al., “Phases of large N vector

Chern-Simons theories on S2 × S1,” 1301.6169.

[152] T. Takimi, “Duality and higher temperature phases of large N Chern-Simons matter theories

on S2 x S1,” JHEP 07 (2013) 177, 1304.3725.

[153] S. Jain, S. Minwalla, and S. Yokoyama, “Chern Simons duality with a fundamental boson and

fermion,” JHEP 1311 (2013) 037, 1305.7235.

[154] S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S. R. Wadia, and S. Yokoyama, “Unitarity,

Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with

fundamental matter,” JHEP 04 (2015) 129, 1404.6373.

[155] M. Moshe and J. Zinn-Justin, “3D Field Theories with Chern–Simons Term for Large N in the

Weyl Gauge,” JHEP 01 (2015) 054, 1410.0558.

[156] A. Bedhotiya and S. Prakash, “A test of bosonization at the level of four-point functions in

Chern-Simons vector models,” JHEP 12 (2015) 032, 1506.05412.

148



[157] G. Gur-Ari and R. Yacoby, “Three Dimensional Bosonization From Supersymmetry,” JHEP

11 (2015) 013, 1507.04378.

[158] M. Geracie, M. Goykhman, and D. T. Son, “Dense Chern-Simons Matter with Fermions at

Large N,” JHEP 04 (2016) 103, 1511.04772.

[159] S. Minwalla and S. Yokoyama, “Chern Simons Bosonization along RG Flows,” JHEP 02

(2016) 103, 1507.04546.

[160] S. Yokoyama, “Scattering Amplitude and Bosonization Duality in General Chern-Simons

Vector Models,” JHEP 09 (2016) 105, 1604.01897.

[161] A. Giveon and D. Kutasov, “Seiberg Duality in Chern-Simons Theory,” Nucl.Phys. B812

(2009) 1–11, 0808.0360.

[162] F. Benini, C. Closset, and S. Cremonesi, “Comments on 3d Seiberg-like dualities,” JHEP 1110

(2011) 075, 1108.5373.

[163] A. Karch and D. Tong, “Particle-Vortex Duality from 3d Bosonization,” 1606.01893.

[164] J. Murugan and H. Nastase, “Particle-vortex duality in topological insulators and

superconductors,” 1606.01912.

[165] N. Seiberg, T. Senthil, C. Wang, and E. Witten, “A Duality Web in 2+1 Dimensions and

Condensed Matter Physics,” 1606.01989.

[166] S. Kachru, M. Mulligan, G. Torroba, and H. Wang, “Bosonization and Mirror Symmetry,”

Phys. Rev. D94 (2016), no. 8 085009, 1608.05077.

[167] D. Radicevic, D. Tong, and C. Turner, “Non-Abelian 3d Bosonization and Quantum Hall

States,” 1608.04732.

[168] P.-S. Hsin and N. Seiberg, “Level/rank Duality and Chern-Simons-Matter Theories,” JHEP 09

(2016) 095, 1607.07457.

[169] S. Banerjee and D. Radicevic, “Chern-Simons theory coupled to bifundamental scalars,” JHEP

06 (2014) 168, 1308.2077.

[170] V. Gurucharan and S. Prakash, “Anomalous dimensions in non-supersymmetric bifundamental

Chern-Simons theories,” JHEP 09 (2014) 009, 1404.7849.

149



[171] O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-branes,” JHEP 0811 (2008) 043,

0807.4924.

[172] S. Giombi and X. Yin, “Higher Spin Gauge Theory and Holography: The Three-Point

Functions,” JHEP 1009 (2010) 115, 0912.3462.

[173] W. Ruhl, “The Goldstone fields of interacting higher spin field theory on AdS(4),”

hep-th/0607197.

[174] S. Giombi, S. Prakash, and X. Yin, “A Note on CFT Correlators in Three Dimensions,” JHEP

1307 (2013) 105, 1104.4317.

150


