Self-compensated 3He-K magnetometer for CPT tests

T. Kornack, I. Kominis, M. Romalis
Princeton University

J. Allred, R. Lyman
University of Washington

DAMOP 2002
14:24, 29 May 2002; C4.003

Work supported by NSF, NIH, NIST,
Packard Foundation, and Princeton University
Overview

- **High sensitivity potassium magnetometer**
 - Direct sensitivity measurements
 - Gradient measurements and relative sensitivity

- **Test of CPT Symmetry**
 - The 3He-K co-magnetometer
 - Behavior of the co-magnetometer
 - Self-compensating operation

- **Coherent interaction of electron and nuclear spin ensembles**
Magnetometers and Spin-Exchange Relaxation

- State-of-the-art magnetometers:
 - use K or Rb at a low density $\sim 10^9 \text{ cm}^{-3}$ in a large cell, 10 - 15 cm.
 - obtain a linewidth of $\sim 1 \text{ Hz}$.
 - are fundamentally limited by spin-exchange relaxation.

[D. Budker (Berkeley); E. Aleksandrov (St. Petersburg)]

⇒ Spin-exchange relaxation is eliminated in low field and high pressure!

- Using K at high density $\sim 10^{14} \text{ cm}^{-3}$ in a *small*, 2.5 cm cell.

⇒ Measured linewidth $1/T_2 = 1.1 \text{ Hz}$ dominated by spin-destruction collisions and wall relaxation

⇒ Unaffected by spin exchange $1/T_{SE} = 20 \text{ kHz}$
The Potassium Magnetometer

External fields are zeroed out with coils.

Pump laser polarizes potassium.

Probe laser detects the tilt of the K polarization in a \hat{y} magnetic field.

Faraday rotation of the probe beam used for detection.
Potassium Magnetometer Sensitivity

- Applied 700 fT\textsubscript{rms} modulation at 10, 20, 30 and 40 Hz:
 - Measured $\delta B = 10 \text{ fT}/\sqrt{\text{Hz}}$
 - More sensitive than High T_c SQUIDs: $\delta B = 30 \text{ fT}/\sqrt{\text{Hz}}$
 - Less sensitive than Low T_c SQUIDs: $\delta B = 1 \text{ fT}/\sqrt{\text{Hz}}$

- Measurement limited by Johnson noise currents flowing in the shields:
 \[I = \sqrt{\frac{4kT\Delta f}{R}} \rightarrow \delta B = 7 \pm 2 \text{ fT}/\sqrt{\text{Hz}} \]

- Shot noise limit is much lower:
 \[\delta B = \frac{1}{\gamma\sqrt{nT_2Vt}} = 0.002 \text{ fT}/\sqrt{\text{Hz}} \]

- How can we get down to the shot noise limit?
 * Differential measurement.
 * Superconducting shields.
Magnetic Gradient Imaging

▷ How can we suppress the Johnson current noise and improve sensitivity?

▷ Using:
 1. Higher buffer gas pressure
 → Reduces diffusion and wall relaxation
 2. Higher K density
 Higher polarization pumping rate
 → Increases bandwidth
 3. Differential measurement
 → Suppresses noise

▷ Predicted sensitivity:
\[\delta B \sim 0.1 \text{ fT}/\sqrt{\text{Hz}} \]

▷ A single probe beam samples many points in the cell:

▷ Sensitive to heart and brain electrical activity.

▷ In imaging applications, a single cell can replace an array of SQUIDs.
A Test of CPT Symmetry

- CPT symmetry is exact in the Standard Model, a local field theory.

- CPT symmetry may be violated:
 - in String Theory or Quantum Gravity
 - if Lorentz symmetry is otherwise broken

- CPT violation is a vector interaction:
 \[L = -b_\mu \bar{\psi} \gamma_5 \gamma^\mu \psi = -b_i \sigma_i \]

 where \(\sigma_i \) are the Pauli spin matrices.

 - Interacts with spins like a magnetic field.
 - Presumably \(b_i \) interacts with different particles differently from a magnetic field.

 \[\Rightarrow \text{ A co-magnetometer with two spin species is sensitive to such a field.} \]

 - Signal would appear as a diurnal signal.

- Expected sensitivity: \(b^e_i = 10^{-30} \text{ GeV}, b^n_i = 10^{-33} \text{ GeV} \)
 (Using present sensitivity \(\delta B = 10 \text{ fT}/\sqrt{\text{Hz}} \))

 - 100 times more sensitive than existing limits.
 - Potentially much better!
The 3He-K Co-Magnetometer

- Use a 3He buffer gas in our K magnetometer:

 $I_{^3\text{He}}$
 $M_{^3\text{He}}, \mu_{^3\text{He}}$
 M_K, μ_K
 B_z

 - 3He is polarized by spin-exchange with polarized K.

 - Introduce an axial field B_z:
 - to cancel the magnetization field of the 3He, $B_z = -\frac{8\pi}{3} \kappa_0 M_{^3\text{He}}$, so that the K magnetometer operates near zero field.
 - to reduce T_1 relaxation of 3He polarization due to field gradients.
Co-Magnetometer Self-Compensated Operation

- Introduce a perturbative field (here, B_x):

 (a) 3He cancels the external field B_z
 (b) 3He compensates for B_x

- The 3He spins adiabatically track the field and the aggregate 3He magnetization maintains field cancellation.

- K atoms are insensitive to B field perturbations!

- The magnetometer does not compensate for (CPT violating) b_i fields because b_i interacts with 3He and K spins differently.
Co-Magnetometer Perturbation Response

▷ Apply square wave perturbation field B_y, focus on DC response:

⇒ No steady-state variation in K signal due to perturbation; fully compensated

▷ Apply sine wave perturbation field B_y, analyze transient response:

⇒ Fully compensated for $f \to 0$.
Coupled Spin Ensembles

- Apply a step field perturbation and tune B_z for compensation:

![Graph showing K Signal (arb.) vs. Time (s)]

- Why does $T_2 \to 0$ in fully compensated mode?
 - The field seen by K is $B_z^K = B_z + M_z$, which is close to zero.
 - 3He and K spin systems are coupled when the field seen by the electron is so low that their precession frequencies resonate; $\omega_K/\omega_{^3\text{He}} \to 1$.
 - When the 3He and K spin systems resonate, the transverse motion of 3He spin is dissipated by the much faster relaxation of K.

- The red line is given by Bloch equations with a coupling term proportional to the product of the 3He and K magnetizations.

- All data fit to a single set of parameters.
Modeling Coupled Spin Ensembles

- Summarizing the previous data, we plot frequency response:

- The data clearly indicate a resonance where the K and 3He precession frequencies converge.
Summary

We have demonstrated:

- a K sensitive magnetometer
 - unaffected by spin-exchange
- a 3He-K co-magnetometer
 - effectively compensates for magnetic fields
 - reduces noise at low frequency

We will perform a test of CPT symmetry using this facility.