String Theory
of
The Regge Intercept

Simeon Hellerman
Kavli Institute for the Physics and Mathematics of the Universe
Tokyo University Institutes for Advanced Study

S.H. and Ian Swanson, arXiv:1312.0999
S.H., and Ian Swanson, In Progress

Strings 2014
Princeton University
Princeton, NJ
June 25, 2014
The string theory of QCD was originally formulated to explain remarkable, robust patterns in hadronic spectral data.
The string theory of QCD was originally formulated to explain remarkable, robust patterns in hadronic spectral data.

Image credit http://phys.columbia.edu/~kabat/why_strings/Regge.jpg

Image credit http://courses.washington.edu/phys55x/ %Physics20557_lec11_files/image064.jpg
Classical string model of the Regge spectrum

The string theory of QCD was originally formulated to explain remarkable, robust patterns in hadronic spectral data.
Classical string model of the Regge spectrum

All hadronic states appear to lie in a tower of resonances that can be plotted on a graph of mass-squared versus angular momentum, as straight lines with a common, universal slope.
Classical string model of the Regge spectrum

\[m^2 = \frac{J}{\alpha'}, \]

\[\alpha' = \frac{1}{2\pi T_{\text{string}}} \]
We know today that the string theory of QCD is **JUST WRONG** at distances \(\lesssim \sqrt{\alpha'} \).

However we can still treat string theory as a perfectly good effective theory at scales \(\gg \sqrt{\alpha'} \).
Classical string model of the Regge spectrum

For a string with large angular momentum, its length is \(\sim \sqrt{J\alpha'} \) so we should be able to use the effective theory of the string worldsheet when \(J \gg 1 \).
This point of view predicts corrections to the Regge spectrum in the form

\[m^2 = \frac{J}{\alpha'} \cdot \left[1 + O \left(J^{-\kappa} \right) \right], \quad \kappa > 0. \]
Classical string model of the Regge spectrum

The leading large-J behavior represents a venerable story that motivated the development of string theory in the first place, during the 1970s. Since that time, no general theory of the subleading large-J corrections has ever been developed.
Classical string model of the Regge spectrum

This talk will describe the development of such a theory.
You might ask: Why does this work at all, in any approximation?

When the string is large, the short-distance structure should become irrelevant, in the technical sense of the renormalization group.

The dynamics should be described by the most relevant terms one can write in a local action for a string, invariant under all the appropriate symmetries.

The most relevant term invariant under the Poincaré symmetry of D-dimensional spacetime is the Nambu-Goto action:

$$S_{NG} = T_{\text{string}} \cdot \text{Area}_{\text{worldsheet}},$$

$$T_{\text{string}} \equiv \frac{1}{2\pi \alpha'}.$$
The Nambu-Goto action describes the spectrum with arbitrarily good precision when the string is large, with typical size scale \(R \).

Less relevant terms in the action should contribute with powers (perhaps including logarithms) of \(R/\sqrt{\alpha'} \).

An operator scaling as \(\text{Length}^{-p} \) contributes to any observable at relative order \(R^{-(p+2)} \) ("Relative" to the leading Nambu-goto contribution, that is).

The coarse analysis of large-\(R \) corrections is easy – to learn the power laws that appear rather than their coefficients, just classify possible invariant operators up to some order in inverse length.
For this talk we are exclusively interested in the first subleading correction to any given amplitude.

The first question should be "Is the Nambu-Goto action enough"?

In certain situations, the answer is yes.
Classical string model of the Regge spectrum

- For this talk we are exclusively interested in the first subleading correction to any given amplitude.
- The first question should be "Is the Nambu-Goto action enough"?
- In certain situations, the answer is yes –
Classical string model of the Regge spectrum

For this talk we are exclusively interested in the first subleading correction to any given amplitude.

The first question should be "Is the Nambu-Goto action enough"?

In certain situations, the answer is yes – assuming the theory is quantized consistently.

The leading corrections to the NG action – including the curvature-squared term – scale as $|X|^{-2}$.

Therefore these operators contribute to M^2_{meson} at order J^{-1} at most.

Therefore the asymptotic Regge intercept – the order J^0 term in the large-J expansion of M^2_{meson} – is calculable and universal.
For this talk we are exclusively interested in the first subleading correction to any given amplitude.

The first question should be "Is the Nambu-Goto action enough"?

In certain situations, the answer is yes – assuming the theory is quantized consistently.

The leading corrections to the NG action – including the curvature-squared term – scale as $|X|^{-2}$.

Therefore these operators contribute to M_{meson}^2 at order J^{-1} at most.

Therefore the asymptotic Regge intercept – the order J^0 term in the large-J expansion of M_{meson}^2 – is calculable and universal –
For this talk we are exclusively interested in the first subleading correction to any given amplitude.

The first question should be "Is the Nambu-Goto action enough"?

In certain situations, the answer is yes – assuming the theory is quantized consistently.

The leading corrections to the NG action – including the curvature-squared term – scale as $|X|^{-2}$.

Therefore these operators contribute to M_{meson}^2 at order J^{-1} at most.

Therefore the asymptotic Regge intercept – the order J^0 term in the large-J expansion of M_{meson}^2 – is calculable and universal – i.e. independent of details of the Lagrangian.
To carry out the analysis, we must pick a gauge.

The two most commonly used gauges (for D not equal to the critical dimension) are orthogonal gauge and static gauge.

The analysis in these two gauges has mostly been done disjointly, with little comparison between the two approaches. Recently, the two gauges, properly renormalized at the quantum level, have been found to be equivalent up to relative order $(\text{length})^{-6}$. (Aharony et al.; Dubovsky, Flauger, Gorbenko)

The evidence for the agreement of gauges is overwhelming.
In practice, orthogonal gauge is much simpler because it is free at leading order.

Furthermore, we’ll be interested in non-static situations, such as rotating strings, which makes static gauge complicated!

I will not give a review of the old-fashioned approach to orthogonal gauge.

I’ll begin by constructing effective string theory in conformal gauge and placing it in a simplified framework by embedding it in the Polyakov formalism.
Let’s begin by considering the usual Polyakov action for the bosonic string, but with an arbitrary number D of embedding coordinates. The Polyakov string is defined by the path integral

$$Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(- S_{\text{Polyakov}} \right),$$

$$\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega},$$

$$S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}},$$

$$\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu,$$

The action S_{Polyakov} is Weyl-invariant but the measure $\mathcal{D}M_{[g]}^{\text{Polyakov}}$ is not.
Let's begin by considering the usual Polyakov action for the bosonic string, but with an arbitrary number \(D \) of embedding coordinates. The Polyakov string is defined by the path integral:

\[
Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right),
\]

\[
\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g] \Omega}
\]

\[
S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\sigma\sigma}|} \mathcal{L}_{\text{Polyakov}},
\]

\[
\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu.
\]

The action \(S_{\text{Polyakov}} \) is Weyl-invariant but the measure \(\mathcal{D}M_{[g]}^{\text{Polyakov}} \) is not.
Covariant effective string theory simplified

Let's begin by considering the usual Polyakov action for the bosonic string, but with an arbitrary number D of embedding coordinates. The Polyakov string is defined by the path integral

$$Z = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_\mathcal{D}[g] \exp \left(- S_{\text{Polyakov}} \right),$$

where

$$\mathcal{D}\mathcal{M}^{\text{Polyakov}}_\mathcal{D}[g] \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]\mathcal{g}}{\mathcal{D}[g]\Omega}$$

The action S_{Polyakov} is Weyl-invariant but the measure $\mathcal{D}\mathcal{M}^{\text{Polyakov}}_\mathcal{D}[g]$ is not.

$$S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}},$$

$$\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu,$$
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\cdot\cdot}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu. \]
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}), \]

\[D\mathcal{M}^{\text{Polyakov}}_g \equiv \frac{D[g]X D[g]g}{D[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{g_{\bullet\bullet}} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int D M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[D M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}_{[g]} X \mathcal{D}_{[g]} g}{\mathcal{D}_{[g]} \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{Polyakov}^{[g]} \exp(-S_{Polyakov}), \]

\[\mathcal{D}M_{Polyakov}^{[g]} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{Polyakov} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} L_{Polyakov}, \]

\[L_{Polyakov} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}} \left[g \right] \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}} \left[g \right] \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}_{[g]} X \mathcal{D}_{[g]} g}{\mathcal{D}_{[g]} \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}), \]

\[D\mathcal{M}^{\text{Polyakov}}_g \equiv \frac{D[g]X D[g]g}{D[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g\cdot\cdot|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}, \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\cdot\cdot}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int D M_{\text{Polyakov}}^{[g]} \exp (-S_{\text{Polyakov}}), \]

\[D M_{[g]}^{\text{Polyakov}} \equiv \frac{D[g] X D[g] g}{D[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\Box \Box}|} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}\mathcal{M}_{[g]} \ Polyakov \ \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}\mathcal{M}_{[g]} \ Polyakov \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g\cdot\cdot|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}[g] \exp(-S^{\text{Polyakov}}), \]

\[\mathcal{D}M^{\text{Polyakov}}[g] \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega}, \]

\[S^{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}^{\text{Polyakov}}, \]

\[\mathcal{L}^{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}), \]
\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]
\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]
\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D} \mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D} \mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g\cdot\cdot|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

$$Z = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}}\right),$$

$$\mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}$$

$$S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}} ,$$

$$\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu ,$$
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g\bullet\bullet|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right) , \]

\[\mathcal{D}M^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} L_{\text{Polyakov}} , \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[
Z = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}),
\]

\[
\mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}
\]

\[
S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}},
\]

\[
\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu.
\]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\mu\nu}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4 \pi \alpha^'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}}\right), \]

\[\mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g|} |L_{\text{Polyakov}}|, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}[g] \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}[g] \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} |L_{\text{Polyakov}}|, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g|} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{a\b} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}_{[g]}X \mathcal{D}_{[g]}g}{\mathcal{D}_{[g]}\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} |L_{\text{Polyakov}}| , \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_{\mu} , \]
\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} |L_{\text{Polyakov}}| , \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
\[Z = \int \mathcal{D}M^{\text{Polyakov}}_\mathcal{[g]} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M^{\text{Polyakov}}_\mathcal{[g]} = \frac{\mathcal{D}_\mathcal{[g]} \mathcal{X} \mathcal{D}_\mathcal{[g]} \mathcal{g}}{\mathcal{D}_\mathcal{[g]} \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
\[Z = \int D M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[D M_{[g]}^{\text{Polyakov}} \equiv \frac{D [g] \chi D [g] g}{D [g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}} \, \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int D M_{[g]}^{\text{Polyakov}} \exp\left(- S_{\text{Polyakov}} \right), \]

\[D M_{[g]}^{\text{Polyakov}} \equiv \frac{D_{[g]} X D_{[g]} g}{D_{[g]} \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}_X \mathcal{D}_g}{\mathcal{D}_g \Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{g} \left| \right| L_{\text{Polyakov}} \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]
\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]
\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}} , \]
\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}, \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{g_{\bullet\bullet}} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \chi \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} |L_{\text{Polyakov}}|, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g\cdot\cdot|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4 \pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}, \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[
Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \\
\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g] \Omega}, \\
S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\cdot\cdot}|} \mathcal{L}_{\text{Polyakov}}, \\
\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu,
\]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{g_{\cdot\cdot}} |L_{\text{Polyakov}}|, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]
\[D\mathcal{M}^{\text{Polyakov}}_{[g]} \equiv \frac{D[g]X D[g]G}{D[g]\Omega} \]
\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]
\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]\mathcal{X}\mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\cdot\cdot}|}\mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} |L_{\text{Polyakov}}| , \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|}L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}, \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Z = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp (-S_{\text{Polyakov}})

D\mathcal{M}^{\text{Polyakov}}_{[g]} \equiv \frac{D[g]X D[g]g}{D[g]\Omega}

S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} \mathcal{L}_{\text{Polyakov}}

\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_aX^\mu \partial_bX_\mu
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[D\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{D[g] X D[g] g}{D[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g] \mathcal{X} \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Z = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (- S_{\text{Polyakov}}),

\mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega}

S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\cdot\cdot}|} \mathcal{L}_{\text{Polyakov}},

\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu,
Covariant effective string theory simplified

\[Z = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}} [g] \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D} \mathcal{M}^{\text{Polyakov}} [g] \equiv \frac{\mathcal{D}[g] \mathcal{X} \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\Box\Box}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int D[M_{\text{Polyakov}}] \exp \left(-S_{\text{Polyakov}} \right), \]

\[D[M_{\text{Polyakov}}] \equiv \frac{D[g] \times D[g] g}{D[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \chi \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\epsilon \epsilon}|} \mathcal{L}_{\text{Polyakov}}, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega}, \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \, \sqrt{|g_{\cdot\cdot}|} \mathcal{L}_{\text{Polyakov}}. \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}}\right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}}\right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}}\right), \]

\[D\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{D[g] \times D[g] g}{D[g] \Omega} \]
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}}\right), \]

\[D\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{D[g] \times D[g] g}{D[g] \Omega} \]
\[Z = \int D\mathcal{M}^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right) , \]

\[D\mathcal{M}^{\text{Polyakov}}_g \equiv \frac{D[g] \times D[g]g}{D[g] \Omega} \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{Polyakov} \exp (-S_{Polyakov}), \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}), \]
Covariant effective string theory simplified

\[Z = \int D M_{[g]}^{\text{Polyakov}} \exp \left(- S_{\text{Polyakov}} \right) , \]
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}_\text{Polyakov}^g \exp (-S_{\text{Polyakov}}) , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right) \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}}\right). \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) . \]
Covariant effective string theory simplified

\[Z = \int D M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) . \]
\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}) \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}). \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) . \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(- S_{\text{Polyakov}} \right) . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp\left(-S_{\text{Polyakov}}\right). \]

Under a Weyl transformation \(g_{\bullet\bullet} \rightarrow \exp(+2\omega) g_{\bullet\bullet} \),
the individual factors of the integrand transform as:

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]
\[\mathcal{D}M^{\text{Polyakov}}_g \rightarrow \exp(F_{\text{anom}}[g, \omega]) \mathcal{D}M^{\text{Polyakov}}_g \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

Under a Weyl transformation \(g_{\bullet\bullet} \rightarrow \exp (+2\omega) g_{\bullet\bullet} \), the individual factors of the integrand transform as:

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]
\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

The form of the anomaly functional \(F[g, \omega] \) is determined uniquely to be

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet}\omega \partial_{\bullet}\omega + \omega R_{(2)}[g] \right\} \]

by the Wess-Zumino consistency condition.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^{\cdot} \omega \partial^{\cdot} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) . \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]
\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left((D - 26)F_{\text{anom}}[g, \omega] \right) \mathcal{D}M_{[g]}^{\text{Polyakov}} \]
\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_{[g]} \exp \left(-S^\text{Polyakov} \right). \]

\[S^\text{Polyakov} \rightarrow S^\text{Polyakov} \]

\[\mathcal{D}M^\text{Polyakov}_{[g]} \rightarrow \exp \left[(D - 26)F^\text{anom}[g, \omega] \right]\mathcal{D}M^\text{Polyakov}_{[g]} \]

\[F^\text{anom}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\mathbf{\bullet} \mathbf{\bullet}} \partial_{\mathbf{\bullet}} \omega \partial_{\mathbf{\bullet}} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S^{\text{Polyakov}} \right). \]

\[S^{\text{Polyakov}} \rightarrow S^{\text{Polyakov}} \]

\[\mathcal{D}M^{\text{Polyakov}}_{[g]} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M^{\text{Polyakov}}_{[g]} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} \mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D} \mathcal{M}_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D} \mathcal{M}_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_{[g]} \exp \left(-S^\text{Polyakov} \right) . \]

\[S^\text{Polyakov} \rightarrow S^\text{Polyakov} \]

\[\mathcal{D}M^\text{Polyakov}_{[g]} \rightarrow \exp \left[(D - 26)F^\text{anom}[g, \omega] \right] \mathcal{D}M^\text{Polyakov}_{[g]} \]

\[F^\text{anom}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\Box \Box} \partial\Box \omega \partial\Box \omega + \omega R_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}}\right). \]

\[S_{\text{Polyakov}} \to S_{\text{Polyakov}} \]

\[\mathcal{D}M^{\text{Polyakov}}_g \to \exp \left[(D - 26)F_{\text{anom}}[g, \omega]\right] \mathcal{D}M^{\text{Polyakov}}_g \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial^\omega \partial^\omega + \omega \mathcal{R}_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D} M^{\text{Polyakov}}_{[g]} \rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D} M^{\text{Polyakov}}_{[g]} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left((D - 26)F_{\text{anom}}[g, \omega] \right) \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

So the path integral is not invariant unless \(D = 26 \):
$Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}}\right) \cdot$

$S_{\text{Polyakov}} \to S_{\text{Polyakov}}$

$\mathcal{D}M_{[g]}^{\text{Polyakov}} \to \exp \left[(D - 26)F_{\text{anom}}[g, \omega]\right] \mathcal{D}M_{[g]}^{\text{Polyakov}}$

$F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}(2)[g] \right\}$

So the path integral is not invariant unless $D = 26$:

$Z[g] \to \exp \left[(D - 26)F[g, \omega]\right] Z[g]$
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left((D - 26) F_{\text{anom}}[g, \omega] \right) \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R(2)[g] \right\} \]

So the path integral is not invariant unless \(D = 26 \):

\[Z[g] \rightarrow \exp \left((D - 26) F[g, \omega] \right) Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}) \cdot \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}\mathcal{M}^{\text{Polyakov}}_g \rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D}\mathcal{M}^{\text{Polyakov}}_g \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g \cdot \omega \partial \cdot \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

So the path integral is not invariant unless \(D = 26 \):

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right).

S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}}

\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}}

F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\}

So the path integral is not invariant unless \(D = 26 \):

Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g]
Covariant effective string theory simplified

\begin{align*}
Z[g] &= \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \\
S_{\text{Polyakov}} &\rightarrow S_{\text{Polyakov}} \\
\mathcal{D}M_{[g]}^{\text{Polyakov}} &\rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \\
F_{\text{anom}}[g, \omega] &\equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega R(2)[g] \right\} \\
Z[g] &\rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g]
\end{align*}
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_[g]^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\}
\]

\[
Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g]
\]
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\nabla \nabla} \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\cdot\cdot} \partial_{\cdot} \omega \partial_{\cdot} \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_[g] \exp \left(- S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\mathbf{\cdot\cdot}} \partial_{\mathbf{\cdot}}\omega \partial_{\mathbf{\cdot}}\omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{\text{Polyakov}}^g \exp(-S_{\text{Polyakov}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\cdot \cdot} \partial^{\cdot} \omega \partial^{\cdot} \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp\left[(D - 26) F[g, \omega]\right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_\text{Polyakov}^\text{Polyakov} \exp (-S_\text{Polyakov}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(- S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\omega \partial_\omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_{[g]} \exp \left(-S^\text{Polyakov} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\cdot \cdot} \partial_\cdot \omega \partial_\cdot \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\Box} \partial_\Box \omega \partial_\Box \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S^{\text{Polyakov}}_\text{Polyakov} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \circ \partial \omega \partial \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

In order to obtain a \textit{Weyl-invariant partition function},
Covariant effective string theory simplified

\[
Z[g] = \int DM^{\text{Polyakov}}_g \exp \left(-S^{\text{Polyakov}}_g\right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\cdots\cdots} \partial_\omega \partial_\omega + \omega R_2[g] \right\}
\]

\[
Z[g] \to \exp \left[(D - 26) F[g, \omega]\right] Z[g]
\]

In order to obtain a Weyl-invariant partition function, we can augment the action by a term \(S_{\text{anom}} \) that transforms under a Weyl transformation as
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g\mathbf{\partial} \omega \mathbf{\partial} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

In order to obtain a Weyl-invariant partition function, we can augment the action by a term \(S_{\text{anom}} \) that transforms under a Weyl transformation as

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

In order to obtain a **Weyl-invariant** partition function, we can **augment** the action by a term \(S_{\text{anom}} \) that transforms under a **Weyl transformation** as

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\dot{\alpha}\dot{\beta}} \partial_{\dot{\alpha}} \omega \partial_{\dot{\beta}} \omega + \omega R_{(2)[g]} \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

In order to obtain a Weyl-invariant partition function, we can augment the action by a term \(S_{\text{anom}} \) that transforms under a Weyl transformation as

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \: d^2 \sigma \left\{ g^{\cdot\cdot} \partial_{\cdot} \omega \partial_{\cdot} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2 \sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g\cdot\cdot \partial\cdot \omega \partial\cdot \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g \partial \omega \partial \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\cdot\cdot} \partial^{\cdot} \omega \partial^{\cdot} \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow \exp\left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R^{\bullet\bullet\bullet\bullet} [g] \right\}
\]

\[
Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g,\omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \overset{\cdot\cdot}{\partial} \omega \overset{\cdot\cdot}{\partial} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g,\omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g,\omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \partial \cdot \omega \partial \cdot \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g,\omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g \dot{\omega} \dot{\omega} + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g,\omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g,\omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}m_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega] . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\bullet\bullet} \partial\omega \partial\omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_2[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}).

F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_2[g] \right\}

Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g]

S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
Covariant effective string theory simplified

$$Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(- S_{\text{Polyakov}} - S_{\text{anom}} \right).$$

$$F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial \cdot \omega \partial \cdot \omega + \omega R_{(2)}[g] \right\}$$

$$Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g]$$

$$S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].$$
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\cdot\omega \partial\cdot\omega + \omega R_2[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{\text{Polyakov}}^g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g \cdot \cdot \partial \omega \partial \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D-26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{\text{Polyakov}}^{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\bullet\omega \partial\bullet\omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D-26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D-26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g\partial\partial\omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\bullet\bullet} \, \partial_\omega \partial_\omega + \omega \, R^{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) \, F[g, \omega] . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \overset{\bullet}{\partial} \omega \overset{\bullet}{\partial} \omega + \omega R^{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\cdot\cdot} \partial_\cdot \omega \partial_\cdot \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S^{\text{Polyakov}} - S^{\text{anom}} \right). \]

\[F^{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R^{(2)}[g] \right\}. \]

\[Z[g] \to \exp \left[0 \cdot F[g, \omega] \right] Z[g]. \]

\[S^{\text{anom}} \to S^{\text{anom}} + (D - 26) F[g, \omega]. \]
$Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right).$

$F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g \ddot{\omega} \partial \omega \partial \omega + \omega \mathcal{R}_2[g] \right\}$

$Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g]$

$S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].$
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g_{\cdot \cdot} \partial_{\cdot} \omega \partial_{\cdot} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g,\omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[0 \cdot F[g,\omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) \, F[g,\omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\mathbf{0}\mathbf{0}} \partial_{\mathbf{0}} \omega \partial_{\mathbf{0}} \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R(2)[g] \right\}
\]

\[
Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M[g]^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M^\text{Polyakov}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R(2)[g] \right\}
\]

\[
Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\cdot\cdot} \partial \cdot \omega \partial \cdot \omega + \omega \mathcal{R}_2[g] \right\}
\]

\[
Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) .
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \partial \omega \partial \omega + \omega R_{(2)}[g] \right\}
\]

\[
Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial \bullet \omega \partial \bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \to \exp \begin{bmatrix} 0 \\ \end{bmatrix} Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_\text{Polyakov} - S_\text{anom} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_\text{anom} \rightarrow S_\text{anom} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}}\right). \\
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\cdot \cdot} \partial_{\cdot} \omega \partial_{\cdot} \omega + \omega R_{(2)}[g] \right\} \\
Z[g] \to \exp \left[0\right] Z[g] \\
S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \\
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega \mathcal{R}_{(2)}[g] \right\} \\
Z[g] \rightarrow \exp \begin{bmatrix} 0 \end{bmatrix} \, Z[g] \\
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) \, F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) \times \]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g_{\Box \Box} \partial_\Box \omega \partial_\Box \omega + \omega \mathcal{R}_2[g] \right\}
\]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

$$Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}).$$

$$F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g \cdot \cdot \partial \omega \partial \omega + \omega \mathcal{R}_{(2)}[g] \right\}$$

$$Z[g] \rightarrow \exp \left[0 \right] Z[g]$$

$$S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].$$
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \begin{bmatrix} 0 \end{bmatrix} Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}[g] \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_\bullet(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial \omega \partial \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2 \sigma \left\{ g_{\cdot \cdot} \partial \cdot \omega \partial \cdot \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\omega} \partial_{\omega} + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow 1. \quad Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \cdot \partial \omega \partial \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow 1. \quad Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R(2)[g] \right\} \]

\[Z[g] \to 1. \quad Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to 1. \quad Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to 1. \quad Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \, \cdot \cdot \, \partial \omega \, \partial \omega + \omega \, R(2)[g] \right\} \]

\[Z[g] \to 1 \cdot Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \exp (-S^{\text{Polyakov}} - S^{\text{anom}}). \]

\[F^{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g_{\Box \Box} \partial_{\Box} \omega \partial_{\Box} \omega + \omega \mathcal{R}^{(2)}[g] \right\} \]

\[Z[g] \rightarrow 1. \quad Z[g] \]

\[S^{\text{anom}} \rightarrow S^{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g\,\cdot\cdot\cdot \partial\cdot\omega \partial\cdot\omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to 1. \quad Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\nabla \nabla} \partial_\nabla \partial_\nabla \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow 1 \cdot Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{\text{Polyakov}}^g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R(2)[g]\right\} \]

\[Z[g] \rightarrow 1 \cdot Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow 1 \cdot Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M[^{\text{Polyakov}}]_g \exp \left(-S[^{\text{Polyakov}}]_g - S[^{\text{anom}}]_g \right) . \]

\[F[^{\text{anom}}]_g(\omega) \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\phi\phi} \partial_\phi \omega \partial_\phi \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow 1 \cdot Z[g] \]

\[S[^{\text{anom}}]_g \rightarrow S[^{\text{anom}}]_g + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g \, \partial \omega \partial \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D} M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) \cdot \\
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g_{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \\
Z[g] \rightarrow Z[g] \\
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g \cdot \partial \omega \partial \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_\rho \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) \cdot \\
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2 \sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \\
Z[g] \rightarrow Z[g] \\
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega R(2)[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp\left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g \cdot \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

In the "linear dilaton theory", one cancels this anomaly by assigning a nontrivial Weyl transformation to one of the scalars \(X^{D-1} \equiv \frac{1}{|V|} V_\mu X^\mu : \)
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

In the "linear dilaton theory", one cancels this anomaly by assigning a nontrivial Weyl transformation to one of the scalars \(X^{D-1} \equiv \frac{1}{|V|} V_\mu X^\mu \):

\[X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega. \]

Weyl-invariance requires \(\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}(2) V \cdot X. \)
Covariant effective string theory simplified

\[Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega R^{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

In the "linear dilaton theory", one cancels this anomaly by assigning a nontrivial Weyl transformation to one of the scalars \(X^{D-1} \equiv \frac{1}{|V|} V\mu X^\mu \):

\[X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega . \]

Weyl-invariance requires \(\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}(2) V \cdot X. \)
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

In the "linear dilaton theory", one cancels this anomaly by assigning a nontrivial Weyl transformation to one of the scalars \(X^{D-1} \equiv \frac{1}{|V|} V_\mu X^\mu : \)

\[X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega . \]

Weyl-invariance requires \(\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}_2 V \cdot X. \)
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[X^{D-1} \equiv \frac{1}{|V|} V_\mu X^\mu \]

\[X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega. \]

\[\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}_2 V \cdot X. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[X^{D-1} \equiv \frac{1}{|V|} V^\mu X_\mu \]

\[X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega . \]

\[\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}_2 V \cdot X. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[X^{D-1} \equiv \frac{1}{|V|} V_\mu X^\mu \]

\[X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega . \]

\[\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}(2) V \cdot X. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\dagger\dagger} \partial_{\dagger} \omega \partial_{\dagger} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g_{ab} \partial_a \omega \partial_b \omega + \omega R_{(2)[g]} \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

From \(X \) we define a Liouville field \(\phi \),

\[X^{D-1} = -\sqrt{\frac{6\alpha'}{26 - D}} \phi, \quad \phi = -\sqrt{\frac{26 - D}{6\alpha'}} X^{D-1}, \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{ab} \partial_a \omega \partial_b \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

From X we define a Liouville field ϕ,

\[X^{D-1} = -\sqrt{\frac{6\alpha'}{26 - D}} \phi, \quad \phi = -\sqrt{\frac{26 - D}{6\alpha'}} X^{D-1}, \]

In terms of which the transformation of ϕ is

\[\phi \rightarrow \phi + \omega, \]

and the anomaly action is

\[S_{\text{anom}} \equiv S_\phi = +\frac{26 - D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]

From \(X \) we define a Liouville field \(\phi \),

\[X^{D-1} = -\sqrt{\frac{6\alpha'}{26 - D}} \phi , \quad \phi = -\sqrt{\frac{26 - D}{6\alpha'}} X^{D-1} . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

From \(X \) we define a Liouville field \(\phi \),

\[X^{D-1} = -\sqrt{\frac{6\alpha'}{26 - D}} \phi , \quad \phi = -\sqrt{\frac{26 - D}{6\alpha'}} X^{D-1} , \]

In terms of which the transformation of \(\phi \) is

\[\phi \rightarrow \phi + \omega , \]

and the anomaly action is

\[S_{\text{anom}} \equiv S_\phi = + \frac{26 - D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right) \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{ab} \partial_a \omega \partial_b \omega + \omega R(2)[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[X^{D-1} = -\sqrt{\frac{6\alpha'}{26 - D}} \phi , \quad \phi = -\sqrt{\frac{26 - D}{6\alpha'}} X^{D-1} , \]

\[\phi \to \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26 - D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right) \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}[g] \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\cdot\cdot} \partial_{\cdot} \omega \partial_{\cdot} \omega + \omega R(2)[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26 - D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right) \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\omega \omega} \partial^\omega \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet}\omega \partial_{\bullet}\omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right) . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{ab} \partial_a \omega \partial_b \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right). \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\cdot\cdot} \partial_\cdot \omega \partial_\cdot \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\alpha\beta} \partial_\alpha \omega \partial_\beta \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right) . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_2 \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]

This is a consistent string theory in \(D \) dimensions, but with only a \(D - 1 \)-dimensional Poincaré symmetry.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right). \]

This is a consistent string theory in \(D \) dimensions, but with only a \(D - 1 \)-dimensional Poincaré symmetry.
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) .
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^a \partial a \omega \partial a \omega + \omega \mathcal{R}_{(2)}[g] \right\}
\]

\[
Z[g] \rightarrow Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]

\[
\phi \rightarrow \phi + \omega,
\]

\[
S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial a \phi \partial b \phi - \phi \mathcal{R}_{(2)} \right).
\]

This is a consistent string theory in \(D \) dimensions, but with only a \(D - 1 \)-dimensional Poincaré symmetry.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} \mathcal{M}_{g}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial \cdot \omega \partial \cdot \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\cdots \cdots} \partial_{\cdots \cdots} \omega \partial_{\cdots \cdots} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right) . \]

However there are other choices for the anomaly action preserving a full \textit{D}-dimensional Poincaré symmetry.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\mathbf{\cdot\cdot}} \partial_{\mathbf{\cdot\cdot}} \omega \partial_{\mathbf{\cdot\cdot}} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]

However there are other choices for the anomaly action preserving a full \textit{D}-dimensional Poincaré symmetry.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_[g] \exp (-S^\text{Polyakov} - S^\text{anom}) \cdot \]

\[F^\text{anom}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S^\text{anom} \rightarrow S^\text{anom} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S^\text{anom} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]

However there are other choices for the anomaly action preserving a full \textit{D-dimensional} Poincaré symmetry. Instead of modifying the Weyl transformation of one of the coordinates, we can construct a composite operator \(\phi \) that transforms as a Liouville field.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right) . \]

However there are other choices for the anomaly action preserving a full \(D \)-dimensional Poincaré symmetry.

Instead of modifying the Weyl transformation of one of the coordinates, we can construct a composite operator \(\phi \) that transforms as a Liouville field.
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)[g]} \right\}
\]

\[
Z[g] \rightarrow Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) \, F[g, \omega].
\]

\[
\phi \rightarrow \phi + \omega,
\]

\[
S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right).
\]

Any choice of \(\phi \) transforming as a scalar under diffeomorphisms and a Liouville field under Weyl transformations will lead to an anomaly-free effective string theory by this prescription.

We would also like to preserve \(D \)-dimensional Poincaré symmetry, so we want to make a Poincaré-invariant choice for \(\phi \).
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

Any choice of \(\phi \) transforming as a scalar under diffeomorphisms and a Liouville field under Weyl transformations will lead to an anomaly-free effective string theory by this prescription.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]

Any choice of \(\phi \) transforming as a scalar under diffeomorphisms and a Liouville field under Weyl transformations will lead to an anomaly-free effective string theory by this prescription. We would also like to preserve \(D \)-dimensional Poincaré symmetry, so we want to make a Poincaré-invariant choice for \(\phi \).
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right) . \]

Any choice of \(\phi \) transforming as a scalar under diffeomorphisms and a Liouville field under Weyl transformations will lead to an anomaly-free effective string theory by this prescription.

We would also like to preserve \(D \)-dimensional Poincaré symmetry, so we want to make a Poincaré-invariant choice for \(\phi \).
Covariant effective string theory simplified

\[Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet\bullet} \partial \omega \partial \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]

The very simplest such choice of \(\phi \) is \[\phi \equiv - \frac{1}{2} \ln \left(g^{\bullet\bullet} \partial \phi X^\mu \partial \phi X_\mu \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]

The very simplest such choice of \(\phi \) is \[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu). \]

This choice of \(\phi \) has all the correct properties.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

The very simplest such choice of \(\phi \) is \(\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial^\bullet X^\mu \partial^\bullet X_\mu). \)

This choice of \(\phi \) has all the correct properties.
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) .
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\mathfrak{ab}} \partial_{\mathfrak{a}}\omega \partial_{\mathfrak{b}}\omega + \omega R(2)[g] \right\}
\]

\[
Z[g] \rightarrow Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]

\[
\phi \rightarrow \phi + \omega ,
\]

\[
S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a\phi \partial_b\phi - \phi R(2) \right).
\]

The very simplest such choice of \(\phi \) is \(\phi \equiv -\frac{1}{2} \ln(g^{\mathfrak{ab}} \partial_{\mathfrak{a}}X^\mu \partial_{\mathfrak{b}}X_\mu) \).

This choice of \(\phi \) has all the correct properties.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{\text{Polyakov}}^g \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

The very simplest such choice of \(\phi \) is \(\phi \equiv -\frac{1}{2} \ln(g^{\bullet \bullet} \partial X^\mu \partial X_\mu). \)

This choice of \(\phi \) has all the correct properties.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \, \left\{ g^{\bullet \bullet} \partial \bullet \omega \partial \bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]

\[\phi \equiv - \frac{1}{2} \ln \left(g^{\bullet \bullet} \partial \bullet X^\mu \partial \bullet X_{\mu} \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\cdot\cdot} \partial\omega \partial\omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right). \]

\[\phi \equiv -\frac{1}{2} \ln (g^{\cdot\cdot} \partial\cdot X^\mu \partial\cdot X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right) \cdot \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet \bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu) . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_{\bullet} X^\mu \partial_{\bullet} X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet \bullet} \partial \partial X^\mu \partial \partial X_\mu). \]
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right). \]

\[\phi \equiv -\frac{1}{2} \ln \left(g^{\bullet\bullet} \partial \cdot X^\mu \partial \cdot X_\mu \right). \]

This choice of \(\phi \) is convenient and natural but not unique.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_{[g]} \exp \left(-S^\text{Polyakov} - S^\text{anom} \right). \]

\[F^\text{anom}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S^\text{anom} \rightarrow S^\text{anom} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S^\text{anom} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet \bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu). \]

This choice of \(\phi \) is convenient and natural but not unique.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right) . \]

\[\phi \equiv - \frac{1}{2} \ln(g^{\bullet \bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu) . \]

This choice of \(\phi \) is convenient and natural but not unique.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right) . \]

\[\phi \equiv -\frac{1}{2} \ln (g^{\bullet\bullet} \partial\phi X^\mu \partial\phi X_\mu) . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial \cdot \omega \partial \cdot \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega] . \]

\[\phi \to \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right) . \]

\[\phi \equiv - \frac{1}{2} \ln(g^{\bullet \bullet} \partial \cdot X^\mu \partial \cdot X_\mu) . \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet \bullet} \partial_{\bullet} X^\mu \partial_{\bullet} X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\cdot\cdot} \partial_{\cdot} X^\mu \partial_{\cdot} X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}[g] \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\dot \bullet \bullet} \partial_{\dot \bullet} X^\mu \partial_{\dot \bullet} X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln (g^{\bullet\bullet} \partial \bullet X^\mu \partial \bullet X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln (g^{\bullet\bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_\bullet X_\mu \partial_\bullet X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_\phi \right). \]

\[S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln\left(g^{\bullet\bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\phi} \right). \]

\[S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_{\bullet} X^\mu \partial_{\bullet} X_\mu). \]
Now we can fix conformal gauge $g_{ab} = \delta_{ab}$. In the usual holomorphic coordinate $w \equiv \sigma^1 + i\sigma^2$ we have $\delta_{w\bar{w}} = \frac{1}{2}$, $\delta^{w\bar{w}} = 2$ with all other components vanishing.
Now we can fix conformal gauge $g_{ab} = \delta_{ab}$. In the usual holomorphic coordinate $w \equiv \sigma^1 + i\sigma^2$ we have $\delta_{w\bar{w}} = \frac{1}{2}, \delta^{w\bar{w}} = 2$ with all other components vanishing.

In this gauge we have

\[
\mathcal{L}_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial^2 X \cdot \bar{\partial} X)(\partial X \cdot \bar{\partial}^2 X)}{(\partial X \cdot \bar{\partial} X)^2} , \quad \beta \equiv \frac{26 - D}{12}
\]

\[+(\text{terms proportional to } \partial \bar{\partial} X) .\]
Now we can fix \textit{conformal gauge} $g_{ab} = \delta_{ab}$. In the usual \textit{holomorphic} coordinate $w \equiv \sigma^1 + i\sigma^2$ we have $\delta_{ww} = \frac{1}{2}$, $\delta^{w\bar{w}} = 2$ with all other components vanishing.

In \textit{this gauge} we have

$$\mathcal{L}_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial^2 X \cdot \bar{\partial}X)(\partial X \cdot \bar{\partial}^2 X)}{(\partial X \cdot \bar{\partial}X)^2}, \quad \beta = \frac{26 - D}{12}$$

+ (terms proportional to $\partial \bar{\partial}X$).

Here we have abbreviated $\partial \equiv \partial_w$, $\bar{\partial} \equiv \bar{\partial}_w$.

Covariant effective string theory simplified
Now we can fix conformal gauge $g_{ab} = \delta_{ab}$. In the usual holomorphic coordinate $w \equiv \sigma^1 + i\sigma^2$ we have

$\delta_{w\bar{w}} = \frac{1}{2}, \delta^{w\bar{w}} = 2$ with all other components vanishing.

In this gauge we have

$$\mathcal{L}_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial^2 X \cdot \bar{\partial} X)(\partial X \cdot \bar{\partial}^2 X)}{(\partial X \cdot \bar{\partial} X)^2}, \quad \beta \equiv \frac{26 - D}{12}$$

$\text{+(terms proportional to } \partial \bar{\partial} X)$.

Here we have abbreviated $\partial \equiv \partial_w, \bar{\partial} \equiv \bar{\partial}_w$.

In a Lorentzian-signature we fix conformal gauge by taking \(g_{ab} = \eta_{ab} \). In the usual light-cone coordinates \(\sigma^\pm \equiv \sigma^0 \pm \sigma^1 \) in terms of which \(g_{+-} = g_{-+} = -\frac{1}{2} \) and \(g^{+-} = g^{-+} = -2 \) with all other components vanishing.
In a Lorentzian-signature we fix conformal gauge by taking $g_{ab} = \eta_{ab}$. In the usual light-cone coordinates $\sigma^{\pm} \equiv \sigma^0 \pm \sigma^1$ in terms of which $g_{+-} = g_{-+} = -\frac{1}{2}$ and $g^{+-} = g^{-+} = -2$ with all other components vanishing.

In this gauge we have

$$\mathcal{L}_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial_+^2 X \cdot \partial_- X)(\partial_+ X \cdot \partial^2_- X)}{(\partial_+ X \cdot \partial_- X)^2} \beta \equiv \frac{26 - D}{12}.$$

$+$ (terms proportional to $\partial_+ \partial_- X$)
In a Lorentzian-signature we fix conformal gauge by taking $g_{ab} = \eta_{ab}$. In the usual light-cone coordinates $\sigma^\pm \equiv \sigma^0 \pm \sigma^1$ in terms of which $g_{+-} = g_{-+} = -\frac{1}{2}$ and $g_{++} = g_{--} = -2$ with all other components vanishing.

In this gauge we have

$$\mathcal{L}_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial_{+}^2 X \cdot \partial_{-} X)(\partial_{+} X \cdot \partial_{-} X)}{(\partial_{+} X \cdot \partial_{-} X)^2} \quad \beta \equiv \frac{26 - D}{12}.$$

$$+(\text{terms proportional to } \partial_{+} \partial_{-} X)$$

Here we have abbreviated $\partial_{\pm} \equiv \partial_{\sigma^\pm}$.

Covariant effective string theory simplified
In a Lorentzian-signature we fix conformal gauge by taking $g_{ab} = \eta_{ab}$. In the usual light-cone coordinates $\sigma^\pm \equiv \sigma^0 \pm \sigma^1$ in terms of which $g^{+\pm} = g^{-\pm} = -\frac{1}{2}$ and $g^{+-} = g^{-+} = -2$ with all other components vanishing.

In this gauge we have

$$\mathcal{L}_{\text{anom}} = \frac{\beta}{2\pi} \frac{\left(\partial_+ X \cdot \partial_- X \right) \left(\partial_+ X \cdot \partial^2 X \right)}{(\partial_+ X \cdot \partial_- X)^2} + \left(\text{terms proportional to } \partial_+ \partial_- X \right)$$

$$\beta \equiv \frac{26 - D}{12}.$$
People familiar with the old covariant effective string formalism of Polchinski and Strominger (1989) in orthogonal gauge will recognize this Lagrangian as the *ad hoc* anomaly term. ...
People familiar with the old covariant effective string formalism of Polchinski and Strominger (1989) in orthogonal gauge will recognize this Lagrangian as the ad hoc anomaly term. ...

... modulo terms proportional to the free equations of motion, which can be removed by field redefinitions.
People familiar with the old covariant effective string formalism of Polchinski and Strominger (1989) in orthogonal gauge will recognize this Lagrangian as the *ad hoc* anomaly term. ⋯

⋯ *modulo* terms proportional to the *free* equations of motion, which can be removed by *field redefinitions*.

Here, we have derived the *same term* from a starting point with *more gauge invariance* by embedding it in the Polyakov path integral and *canceling* the Weyl anomaly. I will refer to this as the *simplified covariant* formalism.
Effective string theory for rotating strings

- For rotating strings we know the length R should scale as $\sqrt{\alpha'} J$ when J is large.

- So calculating the relative-order R^{-2} corrections for rotating strings corresponds to calculating the relative-order J^{-1} corrections.

- The leading-order value of the mass-squared for an open string in four dimensions is

 \[m^2_{\text{leading Regge}} = \frac{J}{\alpha'}. \]

In fact, this relationship defines the (asymptotic) Regge slope α'.

- Computing a relative order J^{-1} term would correspond to computing the asymptotic Regge intercept on the "leading trajectory" – that is, the set of states of lowest mass for a given angular momentum.
Formally, the relative order J^{-1} correction to the dispersion relation on the leading trajectory is particularly simple, because the lowest state with given Noether charges is automatically Virasoro-primary, so the physical state conditions are automatically satisfied, except the mass-shell condition from L_0.

The correction to the mass-squared of the string state is given by

\[
\begin{align*}
\Delta M^2 \bigg|_{\text{closed first-order}} &= \frac{2}{\alpha'} \Delta E_{\text{WS}} \bigg|_{\text{first-order}}, \\
\Delta M^2 \bigg|_{\text{open first-order}} &= \frac{1}{\alpha'} \Delta E_{\text{WS}} \bigg|_{\text{first-order}}, \\
\Delta E_{\text{WS}} \bigg|_{\text{first-order}} &= \langle (P, J) \rangle_{\text{free}} \hat{H}_{\text{first-order}} |(P, J)\rangle_{\text{free}},
\end{align*}
\]
This in turn is given by the Casimir energy $-\frac{D-2}{12}$, plus the classical value of the interaction Hamiltonian in the classical rotating solution with the appropriate angular momenta.

The classical value of the perturbing Hamiltonian is equal to the negative of the classical value of the perturbing Lagrangian. This follows from elementary manipulations in classical mechanics and applies only to the lowest state of a system with fixed Noether charges.

No higher loops or even one-loop diagrams involving interaction vertices contribute at NLO in J. Each additional interaction vertex, and each additional quantum loop, is suppressed by at least one additional power of J.
Let’s see how this works, concretely, for open strings in conformal gauge.

The solution for the lowest-lying state with angular momentum J in a **single plane** is of the form

$$X^0 = 2 \alpha' P^0 \sigma^0,$$

$$Z = -i \sqrt{\alpha'} J \left(e^{i \sigma^+} + e^{i \sigma^-} \right),$$

with σ^1 running from 0 to π. The classical solution satisfies the Neumann boundary condition at $\sigma^1 = 0, \pi$.

Effective string theory for rotating strings
For this case, our analysis breaks down in its own terms.
The Lagrangian is singular near $\sigma^1 = 0, \pi$ in the classical solution.
This is a non-integrable singularity.
For this case, our analysis breaks down in its own terms.

The Lagrangian is singular near $\sigma^1 = 0, \pi$ in the classical solution.

This is a non-integrable singularity. The integral diverges:

$$\mathcal{L}_{\text{rotating solution}} = -\frac{\beta}{2\pi^2} \frac{\sin^2(2\sigma_1)}{(1 - \cos(2\sigma_1))^2}.$$
For the **open string**, this singularity is present because the boundary is moving at the **speed of light** and there is a **curvature singularity** in the Lorentzian induced metric.

For the **closed string**, there is a **singularity** representing a **fold** in the string.

In both cases, the integrated anomaly term **diverges**.

We will first consider a **model calculation** that **avoids** this singularity.

This breakdown of the theory is a **short-distance** singularity, to be removed by **renormalization**.

But first, let us consider a **simpler** case, where there is **no** such singularity.
Let us now perform a calculation in a simple case to illustrate the general idea of large-J universality at subleading order.

The properties of rotations are different in higher dimensions. So we consider closed strings rotating in $D \geq 5$, which need not have folds: The Polchinski-Strominger denominator is nonvanishing everywhere.

We consider closed strings in $D \geq 5$, with nonzero classical angular momenta $J_{1,2}$ in two planes simultaneously.

In terms of the $SO(4) = SU(2)_+ \times SU(2)_-$ subgroup of the $SO(D - 1)$ little group, the total angular momenta are $J_{\pm} \equiv \frac{1}{2}(J_1 \pm J_2)$ where we assume WLOG that $J_1 > J_2 > 0$.
The classical solution is
\[
X^0 = \alpha' P^0 \sigma^0 ,
\]
\[
Z_i = -i \sqrt{\frac{\alpha'}{2}} \left(\alpha_{-1} Z_i e^{i\sigma^+} + \tilde{\alpha}_{-1} Z_i e^{i\sigma^-} \right) ,
\]
\[
\bar{Z}_i = i \sqrt{\frac{\alpha'}{2}} \left(\alpha_{1} \bar{Z}_i e^{-i\sigma^+} + \tilde{\alpha}_{1} \bar{Z}_i e^{-i\sigma^-} \right) ,
\]
Here, the mode amplitudes are
\[
\alpha_{-1} = \alpha_1 = \tilde{\alpha}_{-1} = \tilde{\alpha}_1 = \sqrt{J_1} ,
\]
\[
a_{-1} = \alpha_1 = -\tilde{\alpha}_{-1} = -\tilde{\alpha}_1 = \sqrt{J_2} .
\]
Evaluated in this rotating solution, the contribution of the PS anomaly term, evaluated in the rotating ground state, takes the form

\[\mathcal{L}_{\text{rotating solution}}^{\text{PS}} = -\frac{\beta J^2}{2\pi^2} \frac{\sin^2(2\sigma_1)}{(J_+ - J_- \cos(2\sigma_1))^2}. \]

This Lagrangian density becomes singular at the endpoints \(\sigma_1 = 0 \) and \(\pi \), in the limit \(J_+ = J_- \). This limit is imposed automatically in \(D = 4 \), as the little group \(SO(D - 1) \) has rank one, and \(J_2 \) must vanish.

But for generic biplanar angular momenta, this density is smooth.
Closed strings with rotation in two planes

- The resulting mass shift is

\[M_{\text{closed}}^2 = \frac{1}{\alpha'} \left[2(J_1 + J_2) - \frac{D - 2}{6} \right. \]
\[+ \frac{26 - D}{12} \left(\left(\frac{J_1}{J_2} \right)^{\frac{1}{4}} - \left(\frac{J_2}{J_1} \right)^{\frac{1}{4}} \right)^2 \left. \right] + O(J^{-1}) . \]

- The contribution from the PS term is nonzero unless \(J_1 = J_2 \), or \(D = 26 \).

- When \(J_2 \) is taken to zero, this diverges as a fold develops.

- At present, we do not understand how to renormalize the singular Hamiltonian at the fold.
Renormalization of boundary singularities

- Since we don’t understand that, let us return to our original focus on strings with boundaries.
- Our approach is to regulate and renormalize the boundary singularities in the standard way.
- This works, because all UV-divergences are local terms.
The classical solution is

\[X^0 = 2\alpha' P^0 \sigma^0 \]

\[\tilde{Z}_1 = i \sqrt{\frac{\alpha'}{2}} \tilde{\alpha}_1 \tilde{Z}_1 \left(e^{-i\sigma^+} + e^{-i\sigma^-} \right) \]

\[\tilde{Z}_2 = i \sqrt{\frac{\alpha'}{2}} \frac{\alpha_2}{2} \tilde{Z}_2 \left(e^{-2i\sigma^+} + e^{-2i\sigma^-} \right) \]

\[Z_1 = -i \sqrt{\frac{\alpha'}{2}} \alpha_{-1} \tilde{Z}_1 \left(e^{i\sigma^+} + e^{i\sigma^-} \right) \]

\[Z_2 = -i \sqrt{\frac{\alpha'}{2}} \frac{\alpha_{-2}}{2} \tilde{Z}_2 \left(e^{2i\sigma^+} + e^{2i\sigma^-} \right) \]
Renormalization of boundary singularities

Here,

\[
\alpha_1 \bar{Z}_1 = \sqrt{2J_1} \quad \alpha_{-1} Z_1 = \sqrt{2J_1} \\
\alpha_2 \bar{Z}_2 = 2\sqrt{J_2} \quad \alpha_{-2} Z_2 = 2\sqrt{J_2} .
\]
Remember that we can modify our choice for the composite Liouville field ϕ. We would like to do so so that it our choice is smooth near the boundary. Such a choice is

$$\phi \equiv -\frac{1}{4} \ln(\mathcal{I}_{11}^2 - \epsilon^4 \alpha' \hat{\mathcal{I}}_{22}) ,$$

$$\hat{\mathcal{I}}_{22} \equiv \mathcal{I}_{22} - \frac{\mathcal{I}_{12} \mathcal{I}_{21}}{\mathcal{I}_{11}} ,$$

$$\mathcal{I}_{pq} \equiv \partial^p X \cdot \partial^q X$$

Near the boundary, this behaves as $\hat{\mathcal{I}}_{22} \sim -\mathcal{I}_{22}$, which is nonzero and smooth.
Renormalization of boundary singularities

Now, modulo terms that do not contribute, the density of the PS term is

\[\mathcal{L}_{PS, \text{reg}} \equiv \frac{\beta}{2\pi} \frac{I_{12}I_{21}}{I_{11}^2 + \epsilon^4 \alpha' I_{22}}. \]

Note that wherever and whenever \(I_{11} \neq 0 \), we have \(\mathcal{L}_{PS, \text{reg}} \rightarrow \mathcal{L}_{PS} \). The short-distance modification is irrelevant, whenever the leading-order action is nonzero. The short-distance modification kicks in only at boundaries and folds.

The integral is

\[\Delta M_{\text{open}}^2 = \frac{1}{\epsilon} \frac{26 - D}{24\alpha'} (J_1 + 8J_2)^{1/4} + (\text{finite}) . \]
The short-distance singularity can be cancelled by a local term at the boundary, of the form

\[\mathcal{O}_{\text{quark}} \equiv (\mathcal{I}_{22})^{+\frac{1}{4}} = (-\mathcal{\hat{I}}_{22})^{+\frac{1}{4}} \]

This operator corresponds to an infinitesimal change in a renormalized quark mass.

This may seem like a peculiar operator, but in fact all boundary operators for open strings with Neumann boundaries are nonsingular operators \(\mathcal{I}_{pq} \) dressed with powers of \(\mathcal{I}_{22} \).
After renormalization, we find

\[
M_{\text{open}}^2 = \frac{1}{\alpha'} \left[J_1 + 2J_2 - \frac{D - 2}{24} + \frac{26 - D}{24} \left(-4 + \frac{3 J_1 + 4 J_2}{J_1^{\frac{1}{2}} \sqrt{J_1 + 8J_2}} \right) \right] + O(J^{-1}) .
\]

For angular momenta lying in a single plane (i.e., when \(J_2 = 0 \)), the mass-squared equals \(M_{\text{open}}^2 = (J_1 - 1)/\alpha' \), independent of \(D \). Of course, when \(D = 26 \), we obtain \(M_{\text{open}}^2 = (J_1 + 2J_2 - 1)/\alpha' \).

This is the case in which the bosonic string theory is well-defined microscopically, and the singular PS anomaly term is absent.
It is worth emphasizing that we have fine-tuned the coefficient of the quark mass operator $\mathcal{O}_{\text{quark}}$ so that there is no term of order $J^{1/4}$ in the mass-squared formula.

Generically we should expect a $J^{1/4}$ term in the open-string mass-squared, unless the mass of the quark at the endpoint is light compared to the scale of the string tension.
Renormalization of boundary singularities

- In real QCD there will be additional degrees of freedom at the endpoints, carrying spin and flavor degrees of freedom.
- These degrees of freedom carry symmetries that constrain the allowed operators. In particular, chiral symmetry forbids quark masses, which are associated with the $J^+ \frac{1}{4}$ term in the boundary action. We therefore speculate that in the correct effective boundary CFT of the real QCD string, the $J^+ \frac{1}{4}$ term in the action may be completely fixed when exact chiral symmetry holds.
Several questions now arise.

One might ask, why is the answer universal at all?

And why do the boundary operators appear containing these strange quarter-integer powers I_{22}?
Structure of boundary operators

- This is one of the more surprising features of the effective string theory with Neumann boundary conditions.

- Let us consider any short-distance modification of the theory such that the bulk of the worldsheet is an ordinary effective string theory with an organization of operators such as we have described, with operators dressed with powers of I_{11} – generically negative integer ones.

- For such a theory, the boundary operators always appear dressed with powers of I_{22} – generically negative integer ones.

- This is so for artificial short-distance cutoffs preserving the symmetries – such as the one we have considered – but also for real short-distance effective theories.
Structure of boundary operators

- The result is that all boundary operators are of the form \((\prod_{pq} I_{pq})/I_{22}\).

- We can quickly see that there are no marginal boundary operators of vanishing X-scaling.

- First, use the EOM to reduce all derivatives of X to the form \(\partial^p_0 X\) or \(\partial^p_0 \partial_1 X\).

- Then use Neumann boundary conditions to eliminate the latter.
Now, all bilinear invariants of X at the boundary are of the form $B_{(pq)} \equiv \partial^p_0 X \cdot \partial^q_0 X$.

All boundary operators are of the form $(\prod_{pq} B_{(pq)}) / B_{(22)}^k$.

Now consider only marginal boundary operators.

If the "undressed" operator (the numerator) has dimension $\Delta \equiv \sum_{pq} p + q$, then the dressing is $B_{(22)}^{-(\Delta-1)/4}$.
Then in order to have positive or zero X-scaling, the undressed operator must have $\Delta \leq 5$.

The operators B_{11} and B_{12} vanish as independent operators because they are proportional to free-field stress tensors and first derivatives thereof.

The only marginal operator with $\Delta = 5$ is $B_{(23)}/B_{(22)}$ which is a total derivative along the boundary.

So after modding out by Virasoro descendants, the only marginal operator with nonnegative X-scaling is the quark mass term, corresponding to $\Delta = 4$.
The remaining question is: Why should operators be organized in this form.
The remaining question is:

Why should operators be organized in this form –
The remaining question is:

- Why should operators be organized in this form – with only B_{22} appearing to negative or fractional powers?
- This is indeed counterintuitive
The remaining question is: Why should operators be organized in this form – with only B_{22} appearing to negative or fractional powers? This is indeed counterintuitive –
The remaining question is:

Why should operators be organized in this form – with only B_{22} appearing to negative or fractional powers?

This is indeed counterintuitive – but it appears to be true, for every good short-distance regulator we have examined that preserves all the symmetries of the system.
Structure of boundary operators

- Let us begin by examining a "naturally occurring" regulator
Let us begin by examining a "naturally occurring" regulator –
Let us begin by examining a "naturally occurring" regulator – that is, a well-defined short-distance theory.
Structure of boundary operators

Let us begin by examining a "naturally occurring" regulator – that is, a well-defined short-distance theory –
Let us begin by examining a "naturally occurring" regulator – that is, a well-defined short-distance theory – used by Polchinski and Strominger in their original paper on the covariant effective string theory.
Let us begin by examining a "naturally occurring" regulator – that is, a well-defined short-distance theory – used by Polchinski and Strominger in their original paper on the covariant effective string theory.

The authors start out in $D + 1$ dimensions where the $D + 1^{\text{st}}$ direction ϕ is anisotropic with the others, due to the effect of a dilaton gradient, a tachyon profile, and a massive stringy condensate.
Structure of boundary operators

- Let us begin by examining a "naturally occurring" regulator – that is, a well-defined short-distance theory – used by Polchinski and Strominger in their original paper on the covariant effective string theory.
- The authors start out in $D + 1$ dimensions where the $D + 1^{\text{st}}$ direction ϕ is anisotropic with the others, due to the effect of a dilaton gradient, a tachyon profile, and a massive stringy condensate.
- The worldsheet Lagrangian is
Let us begin by examining a "naturally occurring" regulator – that is, a well-defined short-distance theory – used by Polchinski and Strominger in their original paper on the covariant effective string theory.

The authors start out in $D + 1$ dimensions where the $D + 1$st direction ϕ is anisotropic with the others, due to the effect of a dilaton gradient, a tachyon profile, and a massive stringy condensate.

The worldsheet Lagrangian is

$$\mathcal{L} = \mathcal{L}_{\text{free}} + \mathcal{L}_{\text{tachyon}} + \mathcal{L}_{\text{massive stringy}}$$
Structure of boundary operators

- Let us begin by examining a "naturally occurring" regulator – that is, a well-defined short-distance theory – used by Polchinski and Strominger in their original paper on the covariant effective string theory.

- The authors start out in $D + 1$ dimensions where the $D + 1^{st}$ direction ϕ is anisotropic with the others, due to the effect of a dilaton gradient, a tachyon profile, and a massive stringy condensate.

- The worldsheet Lagrangian is

$$\mathcal{L} = \mathcal{L}_{\text{free}} + \mathcal{L}_{\text{tachyon}} + \mathcal{L}_{\text{massive stringy}}$$

$$\mathcal{L}_{\text{tachyon}} \equiv \mu^2 \exp(\gamma \phi)$$
Structure of boundary operators

Let us begin by examining a "naturally occurring" regulator — that is, a well-defined short-distance theory — used by Polchinski and Strominger in their original paper on the covariant effective string theory.

The authors start out in $D + 1$ dimensions where the $D + 1^{\text{st}}$ direction ϕ is anisotropic with the others, due to the effect of a dilaton gradient, a tachyon profile, and a massive stringy condensate.

The worldsheet Lagrangian is

\[\mathcal{L} = \mathcal{L}_{\text{free}} + \mathcal{L}_{\text{tachyon}} + \mathcal{L}_{\text{massive stringy}} \]

\[\mathcal{L}_{\text{tachyon}} \equiv \mu^2 \exp (\gamma \phi) \]

\[\mathcal{L}_{\text{massive stringy}} \equiv \mu'^{-2} \exp (\gamma' \phi) \left(T^2_{11} + \mathcal{O}(D^{-1}) \right) , \]
Let us begin by examining a "naturally occurring" regulator – that is, a well-defined short-distance theory – used by Polchinski and Strominger in their original paper on the covariant effective string theory.

The authors start out in $D + 1$ dimensions where the $D + 1^{st}$ direction ϕ is anisotropic with the others, due to the effect of a dilaton gradient, a tachyon profile, and a massive stringy condensate.

The worldsheet Lagrangian is

$$\mathcal{L} = \mathcal{L}_{\text{free}} + \mathcal{L}_{\text{tachyon}} + \mathcal{L}_{\text{massive stringy}}$$

$$\mathcal{L}_{\text{tachyon}} \equiv \mu^2 \exp (+\gamma \phi)$$

$$\mathcal{L}_{\text{massive stringy}} \equiv \mu'^{-2} \exp (\gamma' \phi) \left(\mathcal{T}_{11}^2 + O(D^{-1}) \right) ,$$

$$\gamma \equiv -2 + O(D^{-1}) ,$$

$$\gamma' \equiv +2 + O(D^{-1}) .$$
Structure of boundary operators

- We will analyze the system in the limit $D \rightarrow -\infty$.
- Finite-D corrections do not appear to change the qualitative structure of the organization of operators.
To understand how the Liouville direction gets integrated out,
To understand how the Liouville direction gets integrated out, first put the Lorentz-invariant directions into an arbitrary nonsingular configuration $X^\mu(\sigma)$. Then solve for the Liouville field ϕ classically. For a nonsingular configuration of the closed string, we find

$$\phi = -\frac{1}{2} \ln(I_{11}) ,$$

where we have ignored quantum corrections.
Let’s look at this calculation in a bit more detail.
Let’s look at this calculation in a bit more detail. It will be illuminating.

The semiclassical Lagrangian for ϕ is

$$\mathcal{L}_\phi \simeq \frac{|D|}{12\pi^2} (\bar{\partial} \phi)^2 + \mu^2 \exp(-2\phi) + \mu'^{-2} \exp(+2\phi) \mathcal{I}_{11}^2$$

Restrict for the moment to the case where \mathcal{I}_{11} is time-independent, with a dependence only on the spatial worldsheet coordinate σ^1.

Then ◯ ◯ ◯ ◯
Ignoring quantum corrections is strictly justified at $D = -\infty$.

But of course we want to consider finite (and positive) D.

For many purposes the $1/D$ expansion is not very useful at finite positive D, but for some purposes it is useful.

In particular, it is not sufficient or necessary for deriving the power laws to which I_{11} occurs in the effective action.
Structure of boundary operators

- Ignoring quantum corrections is strictly justified at $D = -\infty$.
- But of course we want to consider finite (and positive) D.
- For many purposes the $1/D$ expansion is not very useful at finite positive D, but for some purposes it is useful.
- In particular, it is not sufficient or necessary for deriving the power laws to which \mathcal{I}_{11} occurs in the effective action –
Structure of boundary operators

▶ Ignoring quantum corrections is strictly justified at $D = -\infty$.
▶ But of course we want to consider finite (and positive) D.
▶ For many purposes the $1/D$ expansion is not very useful at finite positive D, but for some purposes it is useful.
▶ In particular, it is not sufficient or necessary for deriving the power laws to which I_{11} occurs in the effective action – these are fixed by conformal invariance.
▶ Nor is the large-D expansion useful for deriving the coefficients with which effective operators appear in the effective string theory.
However the large-D expansion is good for one particular thing:
However the large-D expansion is good for one particular thing: Seeing which operators can appear in the dressing, raised to not-necessarily-positive-integer powers.
However the large-D expansion is good for one particular thing: Seeing which operators can appear in the dressing, raised to not-necessarily-positive-integer powers.

This is because the mass term for the field ϕ.
However the large-D expansion is good for one particular thing: Seeing which operators can appear in the dressing, raised to not-necessarily-positive-integer powers.

This is because the mass term for the field ϕ –
However the large-D expansion is good for one particular thing: Seeing which operators can appear in the dressing, raised to not-necessarily-positive-integer powers. This is because the mass term for the field ϕ – the term multiplying $\phi - \phi_{\text{classical}}$ in the action.
However the large-D expansion is good for one particular thing: Seeing which operators can appear in the dressing, raised to not-necessarily-positive-integer powers.

This is because the mass term for the field ϕ – the term multiplying $\phi - \phi_{\text{classical}}$ in the action –
However the large-D expansion is good for one particular thing: Seeing which operators can appear in the dressing, raised to not-necessarily-positive-integer powers.

This is because the mass term for the field ϕ – the term multiplying $\phi - \phi_{\text{classical}}$ in the action – is precisely I_{11}.
However the large-D expansion is good for one particular thing: Seeing which operators can appear in the dressing, raised to not-necessarily-positive-integer powers.

This is because the mass term for the field ϕ – the term multiplying $\phi - \phi_{\text{classical}}$ in the action – is precisely I_{11}.

It cannot be anything else.
However the large-D expansion is good for one particular thing: Seeing which operators can appear in the dressing, raised to not-necessarily-positive-integer powers.

This is because the mass term for the field ϕ – the term multiplying $\phi - \phi_{\text{classical}}$ in the action – is precisely I_{11}.

It cannot be anything else.
This form of the mass term is robust under conformally invariant modifications of the microscopic action, in the following sense.
This form of the mass term is robust under conformally invariant modifications of the microscopic action, in the following sense.

We always have $M_\phi^2 \propto I_{11} + \text{lower order in } X$

Now one can compute the exact effective action for the string at the quantum level.
This form of the mass term is robust under conformally invariant modifications of the microscopic action, in the following sense.

We always have $M_\phi^2 \propto \mathcal{I}_{11} + \text{lower order in } X$

Now one can compute the exact effective action for the string at the quantum level.

The propagators for ϕ are of the form \mathcal{I}_{11} plus lower order terms that can be treated as a perturbation when the string is large.
This form of the mass term is robust under conformally invariant modifications of the microscopic action, in the following sense.

We always have $M_\phi^2 \propto \mathcal{I}_{11} + \text{lower order in } X$

Now one can compute the exact effective action for the string at the quantum level.

The propagators for ϕ are of the form $\mathcal{I}_{11} + \text{lower order terms}$ that can be treated as a perturbation when the string is large.

Thus it is \mathcal{I}_{11} and only \mathcal{I}_{11} that ever appears in the denominator of an effective operator.
When the string has a Neumann boundary the only difference is that the classical solution has
\[\phi = -\frac{1}{4} \ln(I_{22}) + \text{(const)} + \text{lower order in } X \text{ near the boundary.} \]

The solution is still \(M_\phi^2 \propto I_{11} + \text{lower order in } X \text{ in the bulk of the worldsheet.} \)

As a result, bulk operators are dressed with powers of \(I_{11} \) and boundary operators are dressed with powers of \(I_{22} \).

Thus the organization of operators is as we have said.

This is also true for every other regulator we have examined.

The set of allowed operators in a given effective theory – as opposed to the coefficients of those operators – should be universal. So this operator dressing rule should hold in every UV completion.
Conclusions

We have found that the **effective string theory** framework is predictive for large-J corrections to the spectrum of rotating strings.
Conclusions

- We have found that the effective string theory framework is predictive for large-J corrections to the spectrum of rotating strings.
- For closed strings in $D = 4$ and open strings in any dimension, the leading power corrections are $\Delta M \propto J^{-1/4}$ with a theory-dependent coefficient. These terms are associated with localized terms at boundaries and folds.
- Thank you.
Conclusions

> We have found that the effective string theory framework is predictive for large-J corrections to the spectrum of rotating strings.

> For closed strings in $D = 4$ and open strings in any dimension, the leading power corrections are $\Delta M \propto J^{-\frac{1}{4}}$ with a theory-dependent coefficient. These terms are associated with localized terms at boundaries and folds.

> The (asymptotic) Regge intercept is is universal and calculable, modulo the quark mass term.

> Thank you.
Conclusions

- We have found that the effective string theory framework is predictive for large-J corrections to the spectrum of rotating strings.

- For closed strings in $D = 4$ and open strings in any dimension, the leading power corrections are $\Delta M \propto J^{-\frac{1}{4}}$ with a theory-dependent coefficient. These terms are associated with localized terms at boundaries and folds.

- The (asymptotic) Regge intercept is is universal and calculable, modulo the quark mass term.

- So is every other observable at NLO.
Conclusions

- We have found that the effective string theory framework is predictive for large-J corrections to the spectrum of rotating strings.
- For closed strings in $D = 4$ and open strings in any dimension, the leading power corrections are $\Delta M \propto J^{-\frac{1}{4}}$ with a theory-dependent coefficient. These terms are associated with localized terms at boundaries and folds.
- The (asymptotic) Regge intercept is is universal and calculable, modulo the quark mass term.
- So is every other observable at NLO.
- Thank you.