High Tc and Correlated Superconductors 1999 - present Photoemission Studies on Bi2Sr2CaCuZnO - Electronic Structure Evolution and Temperature Dependence P. White, Z.X. Shen, D. Feng, C.Y. Kim, M. Z. Hasan, J. M. Harris, A. G. Loeser et.al., arXiv:cond-mat/9901349 (1999) Zn Impurities in BiSrCa(CuZn)O - Temperature Induced Spectral Change P. J. White, Z. X. Shen, D. L. Feng, C. Kim, M. Z. Hasan, A. G. Loeser, H. Ikeda et.al., arXiv:cond-mat/9901354 (1999) Science 288, 1811 (2000). Phys. Rev. B. 78, 184508 (2008). Phys. Rev. Lett. 103, 037002 (2009). Phys. Rev. B. 85, 094510 (2012). Nature of Correlated Motion of Electrons in the Parent Cobaltate Superconductors M. Z. Hasan, D. Qian, Y. Li, A. V. Fedorov, Y. -D. Chuang, A. P. Kuprin, M. L. Foo et.al., Annals of Physics 321 (7): 1568-1574 (2006) "Vector field controlled vortex lattice symmetry in a correlated superconductor using scanning tunneling microscopy" Physical Review B 99 (16), 161103 (2019). Quantum Phase Transition of Correlated Iron-Based Superconductivity Physical Review Letters (2019) Exotic Superconductivity and P.W.Anderson theorem? (Princeton 2019) Field-free platform for Majorana-like zero modes in superconductors with a topological surface state S. S. Zhang, J.-X. Yin, G. Dai, L. Zhao, T.-R. Chang, N. Shumiya, K. Jiang, H. Zheng, G. Bian, D. Multer, M. Litskevich, G. Chang, I. Belopolski, T. Cochran, X. Wu, D. Wu, J. Luo, G. Chen, H. Lin, F.-C. Chou, X. Wang, C. Jin, R. Sankar, Z. Wang, and M. Z. Hasan Phys. Rev. B 101, 100507 (2020) (Unpredicted) and/or Unexpected Novel Quantum Effects (Link) Quantum Many-Body Physics: Discovery of unconventional chiral charge order in the normal state of kagome superconductor KV3Sb5 Nature Materials (2021) Giant and anisotropic many-body spin-orbit tunability in a strongly correlated kagome magnet Nature 562, 91-95 (2018) Many-body Resonance in a Correlated Topological Kagome Antiferromagnet Physical Review Letters 125, 046401 (2020) Anomalous transport and chiral charge order in kagome superconductor CsV3Sb5 arXiv:2105.04542 (2021) Rare earth engineering (of many-body physics) in topological kagome magnets arXiv:2007.09913 (2020) Physical Review Letters (2021) Nodeless kagome superconductivity in LaRu3Si2 (Novel kagome superconductors) Phys. Rev. M 5, 034803 (2021) Fermion-boson many-body interplay in a frustrated kagome paramagnet Nature Commun. 11, 4003 (2020) Negative flatband magnetism in a spin-orbit coupled kagome magnet Nature Physics 15, 443 (2019) Observation of metallic surface states in the strongly correlated Kitaev-Heisenberg candidate Phys. Rev. B 93, 245132 (2016) Fermi surface topology and hot spot distribution in the Kondo lattice system CeB6. Phys. Rev. B 92, 104420 (2015). Quantum phase transition of correlated iron-based superconductors Physical Review Letters 123, 217004 (2019) Fermi surface topology and quasiparticle dynamics of host cobaltate superconductors Physical Review Letters 92, 246402 (2004). Momentum dependence of superconducting gap, strong-coupling dispersion kink, and tightly bound Cooper pairs in the high-Tc (Sr,Ba)1-x(K,Na)xFe2As2 superconductors. Phys. Rev. B 78, 184508 (2008). Low-lying quasiparticle modes and hidden collective charge instabilities in parent cobaltates superconductors. Physical Review Letters 96, 216405 (2006). Emergence of Fermi Pockets in a New Excitonic Charge-Density-Wave Melted Superconductor. Physical Review Letters 98, 117007 (2007). |
||
![]() |
||
Momentum dependence of superconducting gap, strong-coupling dispersion kink, and tightly bound Cooper pairs in the high-Tc (Sr,Ba)1-x(K,Na)xFe2As2 superconductors Published in L. Wray, D. Qian, D. Hsieh et al., Phys. Rev. B. 78, 184508 (2008) |
||
![]() |
||
Fermi Surface Topology and Low-Lying Quasiparticle Dynamics of Parent Fe1+xTe/Se Superconductor. Published in Y. Xia, D. Qian, L. Wray, et al., Phys. Rev. Lett. 103, 037002 (2009). |
||
![]() |
||
We report a first study of low energy electronic structure and Fermi surface topology for the recently discovered iron-based superconductor Ca10(Pt3As8)(Fe2As2)5 (the 10-3-8 phase, with Tc ~8K), via angle resolved photoemission spectroscopy (ARPES). Our results suggest that intermediary layers Pt3As8 couple only weakly to the FeAs layers in this new superconductor. |
||
Fermi surface topology and low-lying electronic structure of a new iron-based superconductor Ca10(Pt3As8)(Fe2As2)5. Published in Madhab Neupane, C. Liu, S.-Y. Xu, et al., Phys. Rev. B. 85, 094510 (2012). |